

Foxit PDF SDK for iOS

Developer Guide

TABLE OF CONTENTS

1 Introduction to Foxit PDF SDK ... 1

1.1 Foxit PDF SDK .. 1

1.2 Foxit PDF SDK for iOS ... 1

1.2.1 Why Foxit PDF SDK for iOS is your choice .. 1

1.2.2 Main Frame of Foxit PDF SDK for iOS ... 2

1.2.3 UI Extensions Component Overview .. 4

1.2.4 Key Features of Foxit PDF SDK for iOS .. 6

1.3 Evaluation .. 8

1.4 License ... 8

1.5 About this Guide ... 9

2 Getting Started .. 10

2.1 Requirements.. 10

2.2 What is in the Package ... 10

2.2.1 The package without Mac Catalyst .. 10

2.2.2 The package with Mac Catalyst .. 13

2.3 How to run a demo .. 13

2.3.1 Function demo ... 14

2.3.2 Viewer control demo... 16

2.3.3 Complete PDF viewer demo .. 18

3 Rapidly building a full-featured PDF Reader .. 23

3.1 Make an iOS app in Objective-C with Foxit PDF SDK for iOS .. 23

3.1.1 Create a new iOS project in Objective-C ... 23

3.1.2 Integrate Foxit PDF SDK for iOS into your apps .. 26

3.1.3 Initialize Foxit PDF SDK for iOS .. 28

Foxit PDF SDK for iOS

Developer Guide

3.1.4 Display a PDF document using FSPDFViewCtrl .. 29

3.1.5 Build a full-featured PDF Reader with UI Extensions Component .. 32

3.1.6 Add the scanning feature based on the full-featured PDF Reader ... 34

3.2 Make an iOS app in Swift with Foxit PDF SDK for iOS.. 37

3.2.1 Create a new iOS project in Swift .. 38

3.2.2 Integrate Foxit PDF SDK for iOS into your apps .. 38

3.2.3 Initialize Foxit PDF SDK for iOS .. 38

3.2.4 Display a PDF document using FSPDFViewCtrl .. 39

3.2.5 Build a full-featured PDF Reader with UI Extensions Component .. 41

3.2.6 Add the scanning feature based on the full-featured PDF Reader ... 44

4 Rapidly building a full-featured PDF Reader using Mac Catalyst .. 48

4.1.1 Create a Mac app built with Mac Catalyst .. 48

4.1.2 Integrate Foxit PDF SDK for iOS (Catalyst) into your apps ... 48

4.1.3 Initialize Foxit PDF SDK for iOS (Catalyst) ... 51

4.1.4 Display a PDF document using FSPDFViewCtrl .. 51

4.1.5 Build a full-featured PDF Reader with UI Extensions Component .. 52

5 Customizing User Interface ... 55

5.1 Customize the UI through a configuration file ... 55

5.1.1 Introduction to JSON file ... 55

5.1.2 Configuration Items Description ... 61

5.1.3 Instantiate a UIExtensionsManager object with the configuration file................................... 71

5.1.4 Examples for customizing UI through a configuration file ... 72

5.2 Customize UI elements through APIs .. 74

5.2.1 Customize to hide top/bottom toolbar .. 75

5.2.2 Customize to hide a specific Panel .. 83

5.2.3 Customize to hide the UI elements in the View setting bar ... 86

Foxit PDF SDK for iOS

Developer Guide

5.2.4 Customize to hide the UI elements in the More Menu view .. 89

5.3 Customize UI implementation through source code .. 94

6 Working with SDK API ... 100

6.1 Render ... 100

6.1.1 How to render a specified page to a bitmap ... 101

6.1.2 How to render a specified page to a platform device context .. 102

6.2 Text Page .. 103

6.2.1 How to get the text area on a page by selection ... 103

6.3 Text Search ... 104

6.3.1 How to search a text pattern in a PDF .. 104

6.4 Bookmark (Outline) ... 105

6.4.1 How to travel the bookmarks of a PDF in depth first order ... 106

6.5 Reading Bookmark .. 107

6.5.1 How to add a custom reading bookmark and enumerate all the reading bookmarks 108

6.6 Attachment ... 109

6.6.1 How to embed a specified file to a PDF document ... 109

6.6.2 How to export the embedded attachment file from a PDF and save it as a single file 109

6.7 Annotation .. 110

6.7.1 How to add annotations to a PDF page .. 111

6.7.2 How to delete annotations in a PDF page .. 113

6.7.3 How to register listeners to receive annotation events.. 113

6.8 Form .. 114

6.8.1 How to import and export form data from or to a XML file .. 115

6.9 Security ... 115

6.9.1 How to encrypt a PDF file with password... 116

6.10 Signature... 116

Foxit PDF SDK for iOS

Developer Guide

6.10.1 How to sign a PDF document and verify the signature .. 117

6.10.2 How to set customized time information for signature ... 119

7 Creating a Custom Tool .. 121

7.1 Create a Regional Screenshot Tool in Objective-C .. 121

7.2 Create a Regional Screenshot Tool in Swift ... 128

8 Implement Foxit PDF SDK for iOS using Cordova .. 134

9 Implement Foxit PDF SDK for iOS using React Native .. 135

10 Implement Foxit PDF SDK for iOS using Xamarin .. 136

11 FAQ ... 137

11.1 Bitcode Support ... 137

11.2 Open a PDF document from a specified PDF file path ... 137

11.3 Display a specified page when opening a PDF document ... 139

11.4 License key and serial number cannot work ... 141

11.5 Add a link annotation to a PDF file .. 141

11.6 Insert an image into a PDF file ... 142

11.7 Highlight the links in PDF documents and set the highlight color 143

11.8 Highlight the form fields in PDF form files and set the highlight color 144

11.9 Indexed Full Text Search support.. 145

11.10 Print PDF document .. 147

11.11 Night mode color settings .. 148

11.12 Upload Foxit SDK Framework to Apple App Store .. 149

11.13 Output exception/crash log information ... 150

11.14 Localization settings .. 150

11.15 Update page binding to support Right-to-Left .. 150

Foxit PDF SDK for iOS

Developer Guide

11.16 Issue with opening web PDFs .. 153

11.17 Implement UIScrollViewDelegate events ... 154

11.18 Improve efficiency in inserting and rendering watermarks .. 155

11.19 Enable ink (handwriting) recognition .. 155

12 Technical Support ... 156

Foxit PDF SDK for iOS

Developer Guide

1

1 Introduction to Foxit PDF SDK

1.1 Foxit PDF SDK

Foxit PDF SDK provides high-performance libraries to help any software developer add robust PDF

functionality to their enterprise, mobile and cloud applications across all platforms (includes

Windows, Mac, Linux, Web, Android, iOS, and HarmonyOS Next/OpenHarmony), using the most

popular development languages and environments.

Application developers who use Foxit PDF SDK can leverage Foxit’s powerful, standard-compliant

PDF technology to securely display, create, edit, annotate, format, organize, print, share, secure,

search documents as well as to fill PDF forms. Additionally, Foxit PDF SDK includes a built-in,

embeddable PDF Viewer, making the development process easier and faster. For more detailed

information, please visit the website https://developers.foxit.com/products/pdf-sdk/.

In this guide, we focus on the introduction of Foxit PDF SDK for iOS platform.

1.2 Foxit PDF SDK for iOS

Have you ever worried about the complexity of the PDF specification? Or have you ever felt lost

when asked to build a full-featured PDF app within a limited time-frame? If your answer is "Yes",

then congratulations! You have just found the best solution in the industry for rapidly integrating

PDF functionality into your apps.

Foxit PDF SDK for iOS focuses on helping developers easily integrate powerful Foxit PDF technology

into their own mobile apps. With this SDK, even developers with a limited knowledge of PDF can

quickly build a professional PDF viewer with just a few lines of code on iOS or macOS platforms.

1.2.1 Why Foxit PDF SDK for iOS is your choice

Foxit is a leading software provider of solutions for reading, editing, creating, organizing, and

securing PDF documents. Foxit PDF SDK libraries have been used in many of today’s leading apps,

and they are proven, robust, and battle-tested to provide the quality, performance, and features

that the industry’s largest apps demand.

https://developers.foxit.com/products/pdf-sdk/

Foxit PDF SDK for iOS

Developer Guide

2

Foxit PDF SDK for iOS provides quick PDF viewing and manipulation support for iOS or macOS

Devices. Customers choose it for the following reasons:

• Easy to integrate

Developers can seamlessly integrate the SDK into their own apps with just a few lines of code.

• Perfectly designed

Foxit PDF SDK for iOS is designed with a simple, clean, and friendly style, which provides the best

user experience.

• Flexible customization

Foxit PDF SDK for iOS provides the source code for the user interface which lets the developers have

full control of the functionality and appearance of their apps.

• Robust performance on mobile platforms

Foxit PDF SDK for iOS provides an OOM (out-of-memory) recovery mechanism to ensure the app has

high robust performance when running the app on a mobile device which offers limited memory.

• Powered by Foxit’s high fidelity rendering PDF engine

The core technology of the SDK is based on Foxit’s PDF engine, which is trusted by a large number of

the world’s largest and well-known companies. Foxit’s powerful engine makes the app fast on

parsing, rendering, and makes document viewing consistent on a variety of devices.

• Premium World-side Support

Foxit offers premium support for its developer products because when you are developing mission

critical products you need the best support. Foxit has one of the PDF industry’s largest team of

support engineers. Updates are released on a regular basis to improve user experience by adding

new features and enhancements.

1.2.2 Main Frame of Foxit PDF SDK for iOS

Foxit PDF SDK for iOS consists of three elements as shown in the following table. This structure is

shared between all mobile platform versions of Foxit PDF SDK, which makes it easier to integrate

and support multiple mobile operating systems and frameworks in your apps.

Note：From version 7.4, Foxit PDF SDK for iOS provides a new package which supports to build a Mac

version app built with Mac Catalyst.

Foxit PDF SDK for iOS

Developer Guide

3

Component Name Description Platform and Provision Method

UI EXTENSIONS

An open source library

(or project) with built-in

UI

Android: FoxitRDKUIExtensions.aar

iOS: uiextensionsDynamic.framework

MacOS: uiextensionsDynamic.xcframework

HarmonyOS Next: FoxitRDKUIExtensions.har

PDF VIEW CONTROL
A utility class for PDF

base viewing feature

Android: FoxitRDK.aar

iOS: FoxitRDK.framework

MacOS： FoxitRDK.xcframework

HarmonyOS Next: FoxitRDK.har

OpenHarmony: FoxitRDK.har
PDF CORE

PDF base operation

class at PDF data level

• PDF Core API

The PDF Core API is the heart of this SDK and is built on Foxit’s powerful underlying technology. It

provides the functionality for basic PDF operation features, and is utilized by the PDF View Control

and UI Extensions Component, which ensures the apps can achieve high performance and

efficiency. The Core API can be used independently for document rendering, analysis, text

extraction, text search, form filling, digital signatures, Pressure Sensitive Ink, certificate and

password security, annotation creation and manipulation and much more.

• PDF View Control

The PDF View Control is a utility class that provides the functionality for developers to interact with

rendering PDF documents per their requirements. With Foxit’s renowned and widely used PDF

rendering technology at its core, the View Control provides fast and high quality rendering, zooming,

scrolling and page navigation features. The View Control derives from platform related viewer

classes such as UIView on iOS and allows for extension to accommodate specific user needs.

• UI Extensions Component

The UI Extensions Component is an open source library that provides a customizable user interface

with built-in support for text selection, markup annotation, outline navigation, reading bookmarks,

full-text searching, form filling, text reflow, attachment, digital/handwritten signature, reflow,

document editing and password encryption. These features in the UI Extensions Component are

implemented using the PDF Core API and PDF View Control. Developers can utilize these ready-to-

Foxit PDF SDK for iOS

Developer Guide

4

use UI implementations to build a PDF viewer quickly with the added benefit of complete flexibility

and control to customize the UI design as desired.

From version 4.0, Foxit PDF SDK for iOS made a big change and optimization for the UI Extensions

Component. Now, it wraps the basic UI implementations to FSPDFReader class, such as panel

controller, toolbar settings, and alert view, etc. Building a full-featured PDF Reader is getting simpler

and easier. Furthermore, users can flexibly customize the features they want through a

configuration file.

From version 5.0, Foxit PDF SDK for iOS removed the FSPDFReader class, and moved the wrapped

APIs in FSPDFReader class to UI Extensions Component. In version 5.0, every element in the built-in

UI can be configurable. More advanced APIs and more powerful configuration file are provided for

developers to further customize the UI elements, such as showing or hiding a specific panel,

top/bottom toolbar, the items in the top toolbar, and the items in the View setting bar and More

Menu view.

1.2.3 UI Extensions Component Overview

The UI Extensions Component uses "module" mechanism which refines each feature into a module.

All of the modules except LocalModule (used for file management) will be loaded by default if UI

Extensions is added. Users can customize module through implementing Module interface class,

and then call UIExtensionsManager#registerModule to register the custom module to current

UIExtensions manager. When not in use, you can call UIExtensionsManager#unregisterModule to

unregister it from current UIExtensions manager.

UIExtensionsManager contains the main-frame UI, such as top/bottom toolbar, and other UI

components which are shared between each module. Meanwhile, through UIExtensionsManager,

each feature module can also be loaded separately. And when loaded, the feature module will adapt

and adjust the main-frame UI, as well as establish the connection of message event response. Each

feature module may contain its module-specific UI components, and have its self-contained

message event handling logic. UIExtensionsManager will also be responsible for distributing

messages and events received from View Control component to each feature module. The following

figure shows the detailed relationship between UIExtensionsManager and modules.

Foxit PDF SDK for iOS

Developer Guide

5

The relationship between UIExtensionsManager and modules

Tool handler and annotation handler will process the events from touch screen or gestures of

PDFViewCtrl. When the touch screen and gestures occur, PDFViewCtrl will send the corresponding

events to UIExtensionsManager:

a) If a tool handler exists currently, UIExtensionsManager will send the corresponding events to

the current tool handler, and then event-handing process ends.

b) If an annotation is selected currently, UIExtensionsManager will send the corresponding

events to the annotation handler corresponding to the currently selected annotation, and

then event-handing process ends.

c) If currently no tool handler exists and no annotation is selected, UIExtensionsManager will

send the corresponding events to selection tool handler. Text Selection tool is used for

processing the related events for text selection. For example, select a piece of text, and add

Highlight annotation. Blank Selection tool is used for processing the related events for blank

space. For example, add a Note annotation on the blank space.

Note: Tool Handler and Annotation Handler will not respond the events at the same time. Tool Handler is

primarily used for annotation creation (currently, the creation of link annotation is not supported),

signature creation and text selection. Annotation Handler is mainly used for annotation editing and form

filling. The following figure shows the event response flow chart between Tool Handler and Annotation

Handler.

Foxit PDF SDK for iOS

Developer Guide

6

The event response flow chart between Tool Handler and Annotation Handler

1.2.4 Key Features of Foxit PDF SDK for iOS

Foxit PDF SDK for iOS has several main features which help app developers quickly implement the

functions that they really need and reduce the development cost.

Note: From version 7.1, Foxit PDF SDK for iOS supports the new appearance of iOS 13 Dark Mode. All the

built-in controls in the tools framework can adapt their appearance to match the current system

appearance for a seamless experience.

Features Description

PDF Document Open and close files, set and get metadata.

PDF Page Parse, render, read, and edit PDF pages.

Render Graphics engine created on a bitmap for platform graphics device.

Reflow Rearrange page content.

Crop Crop PDF pages for betting reading.

Foxit PDF SDK for iOS

Developer Guide

7

Text Select Select text in a PDF document.

Text Search Search text in a PDF document, and provide indexed Full-Text Search

Outline Directly locate and link to point of interest within a document.

Reading

Bookmark
Mark progress and interesting passages as users read.

Annotation Create, edit and remove annotations.

Layers Add, edit, and remove optional content groups.

Attachments Add, edit, and remove document level attachments.

Form

Fill form with JavaScript support, export and import form data by

XFDF/FDF/XML file.

Support to create TextField, CheckBox, RadioButton, ComboBox, ListBox,

and Signature Field.

XFA Support static and dynamic XFA.

Signature

Sign a PDF document, verify a signature, add or delete a signature field.

Add and verify third-party digital signature.

Support Long term validation of signatures (LTV).

Fill Fill flat forms (i.e. non-interactive forms) with text and symbols.

Security Protect PDFs with password or certificate.

Pan and Zoom

Adjust the magnification and position of the view area to match the area in

an adjustable rectangle in the Pan & Zoom window's thumbnail view of the

page.

Print Print PDF document.

RMS Support Microsoft RMS decryption with the standard IRMv1 and IRMv2.

Comparison Compare two PDF documents, and mark the differences between them.

Scanning Scan and convert paper documents to PDFs.

Speak Support to read out the text of PDF file.

Split Screen Support split screen.

Right-to-Left Support Right-to-Left.

Out of Memory Recover from an OOM condition

Foxit PDF SDK for iOS

Developer Guide

8

Note Outline is the technical term used in the PDF specification for what is commonly known as

bookmarks in traditional desktop PDF viewers. Reading bookmarks are commonly used on mobile and

tablet PDF viewers to mark progress and interesting passages as users read but are not technically outline

and are stored at app level rather than within the PDF itself.

Support robust PDF applications with Foxit PDF SDK for iOS

Development of robust PDF applications is challenging on mobile platforms which has limited

memory. When memory allocation fails, applications may crash or exit unexpectedly. To deal with

this issue, Foxit PDF SDK for iOS provides an out-of-memory (OOM) mechanism to support

applications.

OOM is an evolved feature in Foxit PDF SDK for iOS because of its complexity. The key of OOM

mechanism is that Foxit PDF SDK for iOS will monitor the usage of memory and take recovery

operations automatically once OOM is detected. During the recovery process, Foxit PDF SDK for iOS

reloads the document and page automatically and restores the status to the original before OOM. It

means the current reading page and location, as well as page view mode (single or continuous page)

can be recovered. However, the data generated from editing will be lost.

Foxit PDF SDK for iOS provides a property "shouldRecover" in FSPDFViewCtrl class. By default, the

value of "shouldRecover" is "YES". If you do not want to enable the auto-recovery when OOM is

detected, you can set "shouldRecover" to "No" as follows:

self.pdfViewControl = [[FSPDFViewCtrl alloc] initWithFrame:[[UIScreen mainScreen] bounds]];

self.pdfViewControl.shouldRecover = NO;

At that time, the application will throw an exception, and may crash or exit unexpectedly.

1.3 Evaluation

Foxit PDF SDK allows users to download trial version to evaluate SDK. The trial version has no

difference from the standard licensed version except for the free 10-day trial limitation and the trial

watermarks in the generated pages. After the evaluation period expires, customers should contact

the Foxit sales team and purchase licenses to continue using Foxit PDF SDK.

1.4 License

Developers should purchase licenses to use Foxit PDF SDK in their solutions. Licenses grant

developers permission to release their apps which utilize Foxit PDF SDK. However, users are

Foxit PDF SDK for iOS

Developer Guide

9

prohibited to distribute any documents, sample code, or source code in the released package of

Foxit PDF SDK to any third party without written permission from Foxit Software Incorporated.

1.5 About this Guide

This guide is intended for the developers who need to integrate Foxit PDF SDK for iOS into their own

apps. It aims at introducing the following sections:

• Section 1: gives an introduction of Foxit PDF SDK, especially for iOS platform SDK.

• Section 2: illustrates the package structure and running demos.

• Section 3: describes how to quickly create a full-featured PDF Reader.

• Section 4: describes how to quickly create a full-featured PDF Reader using Mac Catalyst.

• Section 5: introduces how to customize the user interface.

• Section 6: shows how to use Foxit PDF SDK Core API.

• Section 7: shows how to create a custom tool.

• Section 8: shows how to implement Foxit PDF SDK using Cordova

• Section 9: shows how to implement Foxit PDF SDK using React Native

• Section 10: shows how to implement Foxit PDF SDK using Xamarin

• Section 11: lists some frequently asked questions.

• Section 12: provides support information.

Foxit PDF SDK for iOS

Developer Guide

10

2 Getting Started

It is very easy to setup Foxit PDF SDK for iOS and see it in action! It takes just a few minutes and we

will show you how to use it on the iOS or macOS platforms. The following sections introduce the

structure of the installation package and how to run a demo.

2.1 Requirements

Note: From version 7.5.1, Foxit PDF SDK for iOS only supports 64-bit devices. It is because that in iOS 11

and later, all apps use the 64-bit architecture, please see the Apple developer guide.

The package without Mac Catalyst:

• iOS 11.0 or higher

• Xcode 9.0 or newer

Note: iOS 13 or higher requires Xcode version 11 or higher.

The package with Mac Catalyst:

• macOS 10.15 or higher

• Xcode 11 or higher

2.2 What is in the Package

Foxit PDF SDK for iOS provides two packages as follows:

• foxitpdfsdk_9_1_ios.zip: only support building apps on an iPhone or iPad.

• foxitpdfsdk_9_1_ios_catalyst.zip: support building apps on an iPhone, iPad or a Mac.

Note: If you want to build apps on macOS, you can choose the foxitpdfsdk_9_1_ios_catalyst.zip

package.

2.2.1 The package without Mac Catalyst

Download the "foxitpdfsdk_9_1_ios.zip" package, and extract it to a new directory like

"foxitpdfsdk_9_1_ios" as shown in Figure 2-1. The package contains:

https://developer.apple.com/documentation/uikit/app_and_environment/updating_your_app_from_32-bit_to_64-bit_architecture

Foxit PDF SDK for iOS

Developer Guide

11

docs: A folder containing API references, developer guide,

and upgrade warnings.

icc_profile The default icc profile files used for output preview

feature

libs: A folder containing license files, SDK framework, UI

Extensions Component and source code.

samples: A folder containing iOS sample projects.

getting_started_ios.pdf: A quick guide for Foxit PDF SDK for iOS.

legal.txt: Legal and copyright information.

release_notes.txt: Release information.

Figure 2-1

In the "libs" folder as shown in Figure 2-2, there are items that make up the core components of

Foxit PDF SDK for iOS, and a configuration file for cocoaPods tool and a script file for stripping the

arm architectures.

Foxit PDF SDK for iOS

Developer Guide

12

Figure 2-2

• FoxitRDK.framework – The framework that includes the Foxit PDF SDK dynamic library and

associated header files.

• uiextensionsDynamic.framework – The framework that includes UIExtensions dynamic

library, associated header files, and the resource files that are needed for the default built-in

UI implementations.

• FoxitPDFScanUI.framework – The framework that includes Foxit PDF SDK for scanning

dynamic library, associated header files, and the resource files that are needed for the

default built-in UI implementations of scanning feature.

• FoxitPDF.podspec – A configuration file for cocoaPods tool which is used to manage the

third-party libraries. It has been used in section "Implement Foxit PDF SDK for iOS using

React Native".

• prepare-framework-to-publish-to-appstore.sh – A script file used to strip the arm

architectures from Foxit SDK Framwork. This is because Foxit SDK Framwork includes arm64,

armv7, i386, and x86_64 architectures, but the i386, and x86_64 architectures are not

allowed to be uploaded to Apple App Store.

• pdfscan project – It is an open source library that contains the UI implementations for

scanning feature, which can help developers rapidly integrate scanning feature into their iOS

app, or customize the UI for scanning as desired.

• uiextensions project – found in the "libs/uiextensions_src" folder. It is an open source library

that contains some ready-to-use UI module implementations and the basic UI design for

app, which can help developers rapidly embed a fully functional PDF reader into their iOS

Foxit PDF SDK for iOS

Developer Guide

13

app. Of course, developers are not forced to use the default UI, they can freely customize

and design the UI for their specific apps through the "uiextensions" project.

Note: For iOS 13 or higher, you should use Xcode 11 or higher to build the "uiextensions" project.

2.2.2 The package with Mac Catalyst

Download the "foxitpdfsdk_9_1_ios_catalyst.zip" package, and extract it to a new directory. The

contents in this package are similar to the "foxitpdfsdk_9_1_ios.zip" package. You can refer to the

previous section "The package without Mac Catalyst" for more information.

In the "libs" folder as shown in Figure 2-3, the difference is that the FoxitRDK.xcframework and

uiextensionsDynamic.xcframework can support to build a Mac version of your iPad app using Mac

Catalyst.

Note: Currently, the RMS and Scanning features are not supported by the Mac version app.

Figure 2-3

2.3 How to run a demo

Download and install Xcode IDE (https://developer.apple.com/download/).

Note: In this guide, we do not cover the installation of Xcode. You can refer to Apple’s developer site if you

haven’t installed it already.

Foxit PDF SDK for iOS provides three useful demos (Function demo, Viewer Control demo, and

Complete PDF viewer demo) in both Objective-C and Swift programming languages for developers

to learn how to call the SDK. The Swift demos are located in the "swift" folder. (See Figure 2-4)

Foxit PDF SDK for iOS

Developer Guide

14

Note: The complete PDF viewer demo in Swift provides tabs reading mode to support viewing multiple PDF

documents.

Figure 2-4

Foxit PDF SDK for iOS (Mac Catalyst) provides a Complete PDF viewer demo in Objective-C for

developers to learn how to call the SDK. The demo is located in the "samples" folder. To run this

demo, please make sure that your macOS version is 10.15 or higher and Xcode version is 11 or

higher.

2.3.1 Function demo

The function demo is provided with Objective-C and Swift programming languages, which is used to

show how to use Foxit PDF SDK for iOS to realize some specific features related to PDF with PDF

core API. This demo includes the following features:

• pdf2txt: extract text from a PDF document to a TXT file.

• outline: edit outline (aka bookmark) appearances and titles.

• annotation: add annotations and export annotations to a JSON file.

• docinfo: export document information of a PDF to a TXT file.

• render: render a specified page to Bitmap.

• signature: add a signature to PDF, sign PDF and verify the signature.

• image2pdf: convert images to PDF files.

• watermark: add text, image and PDF-page watermarks to PDF files.

• search: search PDF files.

• graphics_objects: create a PDF document with graphics objects.

Foxit PDF SDK for iOS

Developer Guide

15

To run it in Xcode, follow the steps below:

a) Double-click function_demo.xcodeproj found in the "samples/function_demo" folder to

open the demo in Xcode. (For Swift, double-click function_demo_swift.xcodeproj found in

the "samples/swift/function_demo_swift" folder)

Note: There is another way to open the demo in Xocde: double-click samples_xcworkspace

found in the "samples" folder. It is a workspace including the three demos.

b) Click on "Product -> Run" to run the demo on an iOS device or simulator. In this guide, an

iPhone Simulator will be used as an example. After building the demo successfully, the

features are listed like the Figure 2-5.

Figure 2-5

c) Click the feature buttons in the above picture to perform the corresponding actions. For

example, click "pdf2txt", and then a message box will be popped up as shown in Figure 2-6. It

shows where the text file was saved to. Just run the demo and try the features.

Foxit PDF SDK for iOS

Developer Guide

16

Figure 2-6

2.3.2 Viewer control demo

The viewer control demo is provided with Objective-C and Swift programming languages, which is

used to demonstrate how to implement the features related to the View Control feature level, such

as performing annotations (note, typewriter, highlight, underline, strikeout, squiggly, etc.), outline,

reading bookmarks and text search. The logical structure of the code is quite clear and simple so

that developers can quickly find the detailed implementation of features which are used widely in

PDF apps, such as a PDF viewer. With this demo, developers can take a closer look at the APIs

provided in Foxit PDF SDK.

To run the demo in Xcode, please refer to the setup steps outlined in the Function demo.

Figure 2-7 shows what the demo looks like after it was built successfully. Here, an iPhone Simulator

will be used as an example to run the demo.

Foxit PDF SDK for iOS

Developer Guide

17

Figure 2-7

This demo provides the features like text search and listing reading bookmarks, outline, annotations

and digital signatures. For example, click , select the second tab (outline), then the outline of this

document will be displayed as shown in Figure 2-8.

Note Outline is the technical term used in the PDF specification for what is commonly known as

bookmarks in traditional desktop PDF viewers. Reading bookmarks are commonly used on mobile and

tablet PDF viewers to mark progress and interesting passages as users read but are not technically

outlines and are stored at app level rather than within the PDF itself.

Foxit PDF SDK for iOS

Developer Guide

18

Figure 2-8

2.3.3 Complete PDF viewer demo

2.3.3.1 Complete PDF Viewer demo without Mac Catalyst

The complete PDF viewer demo demonstrates how to use Foxit PDF SDK for iOS to realize a

completely full-featured PDF viewer which is almost ready-to-use as a real world mobile PDF reader.

This demo utilizes all of the features and built-in UI implementations which are provided in Foxit PDF

SDK for iOS.

Note: The complete PDF viewer demo in Swift provides tabs reading mode to support viewing multiple PDF

documents.

To run the demo in Xcode, please refer to the setup steps outlined in the Function demo.

Here, we will build and run the Swift demo in an iPhone Simulator. After building the demo

successfully, on the start screen, it lists the "Sample.pdf" and "complete_pdf_viewer_guide_ios.pdf"

Foxit PDF SDK for iOS

Developer Guide

19

documents. If you want to view multiple PDF documents, click to switch to the tabs reading

mode (see Figure 2-9.).

Note If you want to use some other PDF files to test this demo, you need to put them onto the "Document"

folder of the device.

Figure 2-9

Click OK to switch to the tabs reading mode. Select the "complete_pdf_viewer_guide_ios.pdf"

document, and then click the Back button , and select the "Sample.pdf", then it will be displayed

as shown in Figure 2-10. Now, you can browse the two PDF documents by switching the tabs.

Foxit PDF SDK for iOS

Developer Guide

20

Figure 2-10

This demo realizes a completely full-featured PDF viewer, please feel free to run it and try it.

For example, it provides the page thumbnail feature. You can click the thumbnail menu at the

bottom toolbar, and then the thumbnail of the document will be displayed as shown in Figure 2-11.

Foxit PDF SDK for iOS

Developer Guide

21

Figure 2-11

2.3.3.2 Complete PDF Viewer demo with Mac Catalyst

To run the "complete_pdf_viewer" demo in Xcode, please follow the steps below:

a) Double-click complete_pdf_viewer.xcodeproj found in the "samples/complete_pdf_viewer"

folder to open the demo in Xcode.

b) Click on "Product -> Run" to run the demo on an iOS device/simulator or on your Mac. Here,

select "My Mac" as the run destination for example. After building the demo successfully, on

the start screen, it lists the "Sample.pdf" and "complete_pdf_viewer_guide_ios.pdf"

documents as shown in Figure 2-12.

The features provided in this demo is similar to "Complete PDF Viewer demo without Mac

Catalyst".

Foxit PDF SDK for iOS

Developer Guide

22

Note: You may need to register your Mac using a development provisioning profile which allows

your app to launch on devices and use certain app services during development.

Figure 2-12

Foxit PDF SDK for iOS

Developer Guide

23

3 Rapidly building a full-featured PDF Reader

Foxit PDF SDK for iOS wrapped all of the UI implementations including the basic UI for app and

ready-to-use UI feature modules to UI Extensions Component, so that developers can easily and

rapidly build a full-featured PDF Reader with just a few lines of code. This section will help you to

quickly get started with using Foxit PDF SDK for iOS to make a full-featured PDF Reader app (only

can be deployed to iPhone or iPad devices) in Objective-C and Swift with step-by-step instructions

provided.

3.1 Make an iOS app in Objective-C with Foxit PDF SDK for iOS

This section will help you to quickly make an iOS app in Objective-C using Foxit PDF SDK for iOS. It

includes the following steps:

• Create a new iOS project in Objective-C

• Integrate Foxit PDF SDK for iOS into your apps

• Initialize Foxit PDF SDK for iOS

• Display a PDF document using FSPDFViewCtrl

• Build a full-featured PDF Reader with UI Extensions Component

• Add the scanning feature based on the full-featured PDF Reader

3.1.1 Create a new iOS project in Objective-C

In this guide, we use Xcode 12.0.1 to create a new iOS project.

Fire up Xcode, choose File -> New -> Project…, and then select iOS -> Single View App as shown in

Figure 3-1. Click Next.

Foxit PDF SDK for iOS

Developer Guide

24

Figure 3-1

Choose the options for your new project as shown in Figure 3-2. Please make sure to choose

Objective-C as the programming language. For simplicity, we don’t check the Unit Tests and UI Tests

which are used for automated testing. Then, Click Next.

Figure 3-2

Foxit PDF SDK for iOS

Developer Guide

25

Place the project to the location as desired. The option "Source control" is not actually important for

building your first PDF app, so let’s not check the Git repository. Here, we place the project to

desktop as shown in Figure 3-3. Then, click Create.

Figure 3-3

Foxit PDF SDK for iOS

Developer Guide

26

3.1.2 Integrate Foxit PDF SDK for iOS into your apps

We will integrate the default built-in UI of the SDK into the example project. For simplicity and

convenience, this example project will directly use UI Extensions component, instead of source code

project. We only need to add the following library files to the PDFReader project.

• FoxitRDK.framework

• uiextensionsDynamic.framework

• (optional) FoxitPDFScanUI.framework (Required by the scan module)

To add the above three dynamic framework files into the pdfreader project, please follow the steps

below:

a) Right-click the "pdfreader" project, select Add Files to "pdfreader"… as shown in Figure 3-4.

Figure 3-4

b) Find and choose "FoxitRDK.framework" in the "libs" folder of the download package, and

then click Add as shown in Figure 3-5.

Note: Make sure to check the "Copy items if needed" option.

Foxit PDF SDK for iOS

Developer Guide

27

Figure 3-5

c) Repeat the steps like a) and b) to add "uiextensionsDynamic.framework" and

"FoxitPDFScanUI.framework". Then, the pdfreader project will look like the Figure 3-6.

Figure 3-6

Foxit PDF SDK for iOS

Developer Guide

28

d) Embed the dynamic frameworks. Left-click the project, find Frameworks, Libraries, and

Embedded Content in the General tab, and then choose "Embed & Sign" as shown in Figure

3-7.

Figure 3-7

Now, we have added "FoxitRDK.framework", "uiextensionsDynamic.framework" and

"FoxitPDFScanUI.framework" to the pdfreader project successfully.

3.1.3 Initialize Foxit PDF SDK for iOS

It is necessary for apps to initialize and unlock Foxit PDF SDK for iOS using a license before calling

any APIs. The function + [FSLibrary initialize:key:] is provided to initialize Foxit PDF SDK. The trial

license files can be found in the "libs" folder of the download package. After the evaluation period

expires, you should purchase an official license to continue using it. Finish the initialization in the

didFinishLaunchingWithOptions method within the AppDelegate.m file.

#import "AppDelegate.h"

#import <FoxitRDK/FSPDFObjC.h>

@interface AppDelegate ()

@end

@implementation AppDelegate

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{

 // The value of "sn" can be found in the "rdk_sn.txt".

 // The value of "key" can be found in the "rdk_key.txt".

Foxit PDF SDK for iOS

Developer Guide

29

 NSString* sn = @" ";

 NSString* key = @" ";

 FSErrorCode eRet = [FSLibrary initialize:sn key:key];

 if (FSErrSuccess != eRet) {

 return NO;

 }

 return YES;

}

@end

Note The parameter "sn" can be found in the "rdk_sn.txt" (the string after "SN=") and the "key" can be

found in the "rdk_key.txt" (the string after "Sign=").

3.1.4 Display a PDF document using FSPDFViewCtrl

So far, we have added Foxit PDF SDK for iOS frameworks to the pdfreader project, and finished the

initialization of the Foxit PDF SDK. Now, let’s start displaying a PDF document using FSPDFViewCtrl

with just a few lines of code.

Note: The UI Extensions Component is not required if you only need to display a PDF document.

First of all, add a PDF file to the project which will be used as the test file. For example, we use

"Sample.pdf" found in the "samples\test_files" folder of the download package. Right-click the

pdfreader project, and select Add Files to "pdfreader"… to add this file. After adding, you can see

the PDF in the Xcode’s Copy Bundle Resources as shown in Figure 3-8.

Note: You can add the PDF to Copy Bundle Resources directly. Just left-click the pdfreader project, find

Copy Bundle Resources in the Build Phases tab, press on the + button, and choose the file to add. You

can refer to any PDF file, just add it to the Xcode’s Copy Bundle Resources.

Foxit PDF SDK for iOS

Developer Guide

30

Figure 3-8

Then, add the following code to ViewController.m to display a PDF document. It’s really easy to

present a PDF on screen. All you need is to get a PDF file, instantiate a FSPDFViewCtrl object and call

- [FSPDFViewCtrl openDoc:password:completion:] function to open and display the PDF.

Update ViewController.m as follows:

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

@interface ViewController ()

@end

@implementation ViewController

- (void)viewDidLoad {

 [super viewDidLoad];

 // Get the path of a PDF.

 NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

 // Initialize a FSPDFViewCtrl object with the size of the entire screen.

 FSPDFViewCtrl* pdfViewCtrl;

 pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

 // Open an unencrypted PDF document.

 [pdfViewCtrl openDoc:pdfPath password:nil completion:nil];

 // Add the pdfViewCtrl to the root view.

 [self.view addSubview:pdfViewCtrl];

}

Foxit PDF SDK for iOS

Developer Guide

31

- (void)didReceiveMemoryWarning {

 [super didReceiveMemoryWarning];

 // Dispose of any resources that can be recreated.

}

@end

Fantastic! We have now finished building a simple iOS app which uses Foxit PDF SDK to display a PDF

document with just a few lines of code. The next step is to run the project on a device or simulator.

In this guide, we build and run the project on an iPhone Simulator, and you will see that the

"Sample.pdf" document is displayed as shown in Figure 3-9. Now, this sample app has some basic

PDF features, such as zooming in/out and page turning. Just have a try!

Figure 3-9

Foxit PDF SDK for iOS

Developer Guide

32

3.1.5 Build a full-featured PDF Reader with UI Extensions Component

Foxit PDF SDK for iOS comes with built-in UI design including the basic UI for app and the feature

modules UI, which are implemented using Foxit PDF SDK and are shipped in the UI Extensions

Component. Hence, building a full-featured PDF Reader is getting simpler and easier. All you need to

do is to instantiate a UIExtensionsManager object, and then set it to FSPDFViewCtrl.

Instantiate a UIExtensionsManager object and set it to FSPDFViewCtrl

In the "ViewController.m" file, you only need to add the following code:

#import <uiextensionsDynamic/uiextensionsDynamic.h>

UIExtensionsManager* extensionsManager;

...

extensionsManager = [[UIExtensionsManager alloc] initWithPDFViewControl:pdfViewCtrl];

pdfViewCtrl.extensionsManager = extensionsManager;

Add permissions to access camera, microphone, photo library and bluetooth

In order to access the camera, microphone, photo library and bluetooth in iOS 9.0 or higher, you

need to do the following configuration in the "Info.plist".

<key>NSCameraUsageDescription</key>

<string>The App needs to access your Camera, please allow</string>

<key>NSMicrophoneUsageDescription</key>

<string>The App needs to access your Microphone, please allow</string>

<key>NSPhotoLibraryAddUsageDescription</key>

<string>The App needs to add pictures into your Photo Library, please allow</string>

<key>NSPhotoLibraryUsageDescription</key>

<string>The App needs to access your Photo Library, please allow</string>

<key>NSBluetoothAlwaysUsageDescription</key>

<string>RDK only lets you connect to apple pencil or keyboard.</string>

<key>NSBluetoothPeripheralUsageDescription</key>

<string>RDK only lets you connect to apple pencil or keyboard.</string>

The whole update of ViewController.m is as follows:

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

Foxit PDF SDK for iOS

Developer Guide

33

#import <uiextensionsDynamic/uiextensionsDynamic.h>

@interface ViewController ()

@end

@implementation ViewController

{

 UIExtensionsManager* extensionsManager;

}

- (void)viewDidLoad {

 [super viewDidLoad];

 // Get the path of a PDF.

 NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

 // Initialize a FSPDFViewCtrl object with the size of the entire screen.

 FSPDFViewCtrl* pdfViewCtrl;

 pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

 // Open an unencrypted PDF document.

 [pdfViewCtrl openDoc:pdfPath password:nil completion:nil];

 // Add the pdfViewCtrl to the root view.

 [self.view addSubview:pdfViewCtrl];

 // Instantiate a UIExtensionsManager object and set it to pdfViewCtrl

 extensionsManager = [[UIExtensionsManager alloc] initWithPDFViewControl:pdfViewCtrl];

 pdfViewCtrl.extensionsManager = extensionsManager;

}

- (void)didReceiveMemoryWarning {

 [super didReceiveMemoryWarning];

 // Dispose of any resources that can be recreated.

}

@end

Let's run it on an iPhone Simulator. Now, it is a full-featured PDF Reader as shown in Figure 3-10,

which includes all of the features in Complete PDF Viewer demo. Feel free to try it.

Foxit PDF SDK for iOS

Developer Guide

34

Figure 3-10

3.1.6 Add the scanning feature based on the full-featured PDF Reader

The scanning feature is a stand-alone module which is not shipped in the UI Extensions Component,

so if you want to use this feature in your project, you should add the core code below to call the

scan module:

#import <FoxitPDFScanUI/PDFScanManager.h>

// Initialize the scan module.

[PDFScanManager initializeScanner:0 serial2:0];

[PDFScanManager initializeCompression:0 serial2:0];

// Get the PDFScan controller.

UIViewController *VC = [[PDFScanManager shareManager] getPDFScanView];

if (VC) [self presentViewController:VC animated:YES completion:nil];

[PDFScanManager setSaveAsCallBack:^(NSError * _Nonnull error, NSString * _Nonnull savePath) {

Foxit PDF SDK for iOS

Developer Guide

35

 // <add your code>

}];

For + [PDFScanManager initializeScanner:serial2:] and + [PDFScanManager initializeCompression:serial2:]

interfaces, if you set the parameters to 0, then the scanned image will be with watermark. If you do

not want to have watermark, you should contact Foxit sales or support team to get the license key.

Based on the previous section, we add a new button to call the scan module.

Update ViewController.m as follows:

Assuming that you have copied the scan.imageset file in

"samples/complete_pdf_viewer/Source/Assets.xcassets" folder to

"pdfreader/pdfreader/Assets.xcassets" folder.

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

#import <uiextensionsDynamic/uiextensionsDynamic.h>

#import <FoxitPDFScanUI/PDFScanManager.h>

@interface ViewController ()

@end

@implementation ViewController

{

 UIExtensionsManager* extensionsManager;

 UIButton *openScanBtn;

}

- (void)viewDidLoad {

 [super viewDidLoad];

 // Get the path of a PDF.

 NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

 // Initialize a FSPDFViewCtrl object with the size of the entire screen.

 FSPDFViewCtrl* pdfViewCtrl;

 pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

 // Open an unencrypted PDF document.

 [pdfViewCtrl openDoc:pdfPath password:nil completion:nil];

 // Add the pdfViewCtrl to the root view.

 [self.view addSubview:pdfViewCtrl];

 // Instantiate a UIExtensionsManager object and set it to pdfViewCtrl

 extensionsManager = [[UIExtensionsManager alloc] initWithPDFViewControl:pdfViewCtrl];

Foxit PDF SDK for iOS

Developer Guide

36

 pdfViewCtrl.extensionsManager = extensionsManager;

 // Create a scan button.

 openScanBtn = [[UIButton alloc] initWithFrame:CGRectMake(self.view.frame.size.width - 80,

self.view.frame.size.height - 140, 60, 60)];

 [openScanBtn setImage:[UIImage imageNamed:@"scan"] forState:UIControlStateNormal];

 [openScanBtn addTarget:self action:@selector(openScan:) forControlEvents:UIControlEventTouchUpInside];

 // Add the scan button to the root view.

 [self.view addSubview:openScanBtn];

 // Initialize the scan module.

 [PDFScanManager initializeScanner:0 serial2:0];

 [PDFScanManager initializeCompression:0 serial2:0];

}

- (IBAction)openScan:(UIButton *)sender{

 // Get the PDFScan controller.

UIViewController *VC = [[PDFScanManager shareManager] getPDFScanView];

 if (VC) [self presentViewController:VC animated:YES completion:nil];

 [PDFScanManager setSaveAsCallBack:^(NSError * _Nonnull error, NSString * _Nonnull savePath) {

 if (savePath) {

 if (VC.presentingViewController) {

 [VC.presentingViewController dismissViewControllerAnimated:NO completion:nil];

 }

 [VC dismissViewControllerAnimated:NO completion:nil];

 }

 }];

}

- (void)didReceiveMemoryWarning {

 [super didReceiveMemoryWarning];

 // Dispose of any resources that can be recreated.

}

@end

Run the project on an iPhone Simulator, then you will see the following window (Figure 3-11), tap the

scan button to start scanning documents.

Foxit PDF SDK for iOS

Developer Guide

37

Figure 3-11

3.2 Make an iOS app in Swift with Foxit PDF SDK for iOS

Nowadays, Swift is more and more popular for iOS developers because its syntax is much cleaner

and easier to read. To better support Swift developers, this section will help you to quickly make an

iOS app in Swift using Foxit PDF SDK for iOS. It includes the following steps:

• Create a new iOS project in Swift

• Integrate Foxit PDF SDK for iOS into your apps

• Initialize Foxit PDF SDK for iOS

• Display a PDF document using FSPDFViewCtrl

• Build a full-featured PDF Reader with UI Extensions Component

Foxit PDF SDK for iOS

Developer Guide

38

• Add the scanning feature based on the full-featured PDF Reader

3.2.1 Create a new iOS project in Swift

In this guide, we use Xcode 12.0.1 to create a new iOS project.

To create a new iOS project in Swift, you can refer to section 3.1.1 "Create a new iOS project in

Objective-C". The only difference is that you should choose Swift as the programming language (See

Figure 3-12).

Figure 3-12

3.2.2 Integrate Foxit PDF SDK for iOS into your apps

To integrate Foxit PDF SDK for iOS into your apps, please refer to section 3.1.2 "Integrate Foxit PDF

SDK for iOS into your apps" to add the dynamic frameworks "FoxitRDK.framework",

"uiextensionsDynamic.framework" and "FoxitPDFScanUI.framework" into the pdfreader project.

3.2.3 Initialize Foxit PDF SDK for iOS

It is necessary for apps to initialize and unlock Foxit PDF SDK for iOS using a license before calling

any APIs. The function + [FSLibrary initialize:key:] is provided to initialize Foxit PDF SDK. The trial

license files can be found in the "libs" folder of the download package. After the evaluation period

expires, you should purchase an official license to continue using it. Finish the initialization in the

application method within the AppDelegate.swift file.

Foxit PDF SDK for iOS

Developer Guide

39

import FoxitRDK

...

func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions:

[UIApplicationLaunchOptionsKey: Any]?) -> Bool {

 let sn = ""

 let key = ""

 let eRet = FSLibrary.initialize(sn, key:key)

 if .errSuccess != eRet {

 return false

 }

 return true

}

Note The parameter "sn" can be found in the "rdk_sn.txt" (the string after "SN=") and the "key" can be

found in the "rdk_key.txt" (the string after "Sign=").

3.2.4 Display a PDF document using FSPDFViewCtrl

So far, we have added Foxit PDF SDK for iOS frameworks to the pdfreader project, and finished the

initialization of the Foxit PDF SDK. Now, let’s start displaying a PDF document using FSPDFViewCtrl

with just a few lines of code.

Note: The UI Extensions Component is not required if you only need to display a PDF document.

First of all, add a PDF file to the project which will be used as the test file. For example, we use

"Sample.pdf" found in the "samples\test_files" folder of the download package. Right-click the

pdfreader project, and select Add Files to "pdfreader"… to add this file. After adding, you can see

the PDF in the Xcode’s Copy Bundle Resources as shown in Figure 3-13.

Note You can add the PDF to Copy Bundle Resources directly. Just left-click the pdfreader project, find

Copy Bundle Resources in the Build Phases tab, press on the + button, and choose the file to add. You

can refer to any PDF file, just add it to the Xcode’s Copy Bundle Resources.

Foxit PDF SDK for iOS

Developer Guide

40

Figure 3-13

Then, add the following code to ViewController.swift to display a PDF document. It’s really easy to

present a PDF on screen. All you need is to get a PDF file, instantiate a FSPDFViewCtrl object and call

- [FSPDFViewCtrl openDoc:password:completion:] function to open and display the PDF.

Update ViewController.swift as follows:

import UIKit

import FoxitRDK

class ViewController: UIViewController {

 override func viewDidLoad() {

 super.viewDidLoad()

 // Get the path of a PDF.

 let pdfPath = Bundle.main.path(forResource: "Sample", ofType: "pdf")!

 // Initialize a FSPDFViewCtrl object with the size of the entire screen.

 var pdfViewCtrl: FSPDFViewCtrl!

 pdfViewCtrl = FSPDFViewCtrl.init(frame:self.view.bounds)

 // Set the document to display.

 pdfViewCtrl.openDoc(pdfPath, password: nil, completion: nil)

 // Add the pdfViewCtrl to the root view.

 self.view.insertSubview(pdfViewCtrl, at: 0)

 }

 override func didReceiveMemoryWarning() {

 super.didReceiveMemoryWarning()

 // Dispose of any resources that can be recreated.

 }

}

Foxit PDF SDK for iOS

Developer Guide

41

Fantastic! We have now finished building a simple iOS app in Swift which uses Foxit PDF SDK to

display a PDF document with just a few lines of code. The next step is to run the project on a device

or simulator.

In this guide, we build and run the project on an iPhone Simulator, and you will see that the

"Sample.pdf" document is displayed as shown in Figure 3-14. Now, this sample app has some basic

PDF features, such as zooming in/out and page turning. Just have a try!

Figure 3-14

3.2.5 Build a full-featured PDF Reader with UI Extensions Component

Foxit PDF SDK for iOS comes with built-in UI design including the basic UI for app and the feature

modules UI, which are implemented using Foxit PDF SDK and are shipped in the UI Extensions

Component. Hence, building a full-featured PDF Reader is getting simpler and easier. All you need to

do is to instantiate a UIExtensionsManager object and set it to FSPDFViewCtrl.

Foxit PDF SDK for iOS

Developer Guide

42

Instantiate a UIExtensionsManager object and set it to FSPDFViewCtrl

In the "ViewController.swift" file, you only need to add the following code:

import uiextensionsDynamic

...

var extensionsManager: UIExtensionsManager!

...

extensionsManager = UIExtensionsManager(pdfViewControl: pdfViewCtrl)

pdfViewCtrl.extensionsManager = extensionsManager;

Add permissions to access camera, microphone, photo library and bluetooth

In order to access the camera, microphone, photo library and bluetooth in iOS 9.0 or higher, you

need to do the following configuration in the "Info.plist".

<key>NSCameraUsageDescription</key>

<string>For adding photographs to your PDF files.</string>

<key>NSMicrophoneUsageDescription</key>

<string>RDK need to add record permissions,please allow</string>

<key>NSPhotoLibraryAddUsageDescription</key>

<string>RDK need to add picture permissions,please allow</string>

<key>NSPhotoLibraryUsageDescription</key>

<string>For adding pictures to your PDF files.</string>

<key>NSBluetoothAlwaysUsageDescription</key>

<string>RDK only lets you connect to apple pencil or keyboard.</string>

<key>NSBluetoothPeripheralUsageDescription</key>

<string>RDK only lets you connect to apple pencil or keyboard.</string>

The whole update of ViewController.swift is as follows:

import UIKit

import FoxitRDK

import uiextensionsDynamic

class ViewController: UIViewController {

 var extensionsManager: UIExtensionsManager!

 override func viewDidLoad() {

 super.viewDidLoad()

Foxit PDF SDK for iOS

Developer Guide

43

 // Get the path of a PDF.

 let pdfPath = Bundle.main.path(forResource: "Sample", ofType: "pdf")!

 // Initialize a FSPDFViewCtrl object with the size of the entire screen.

 var pdfViewCtrl: FSPDFViewCtrl!

 pdfViewCtrl = FSPDFViewCtrl.init(frame:self.view.bounds)

 // Set the document to display.

 pdfViewCtrl.openDoc(pdfPath, password: nil, completion: nil)

 // Add the pdfViewCtrl to the root view.

 self.view.insertSubview(pdfViewCtrl, at: 0)

 // Initialize a UIExtensionsManager object and set it to pdfViewCtrl.

 extensionsManager = UIExtensionsManager(pdfViewControl: pdfViewCtrl)

 pdfViewCtrl.extensionsManager = extensionsManager;

 }

 override func didReceiveMemoryWarning() {

 super.didReceiveMemoryWarning()

 // Dispose of any resources that can be recreated.

 }

}

Let's run it on an iPhone Simulator. Now, it is a full-featured PDF Reader as shown in Figure 3-15,

which includes all of the features in Complete PDF Viewer demo. Feel free to try it.

Foxit PDF SDK for iOS

Developer Guide

44

Figure 3-15

3.2.6 Add the scanning feature based on the full-featured PDF Reader

The scanning feature is a stand-alone module which is not shipped in the UI Extensions Component,

so if you want to use this feature in your project, you should add the core code below to call the

scanning module:

import FoxitPDFScanUI

// Initialize the scan module.

PDFScanManager.initializeScanner(0, serial2: 0);

PDFScanManager.initializeCompression(0, serial2: 0);

// Get the PDFScan controller.

let VC = PDFScanManager.share().getPDFScanView();

self.present(VC, animated: true, completion: nil);

PDFScanManager.saveAsCallBack = { (error, savePath) -> () in

 // <add your code>

Foxit PDF SDK for iOS

Developer Guide

45

}

For + [PDFScanManager initializeScanner:serial2:] and + [PDFScanManager initializeCompression:serial2:]

interfaces, if you set the parameters to 0, then the scanned image will be with watermark. If you do

not want to have watermark, you should contact Foxit sales or support team to get the license key.

Based on the previous section, we add a new button to call the scan module.

Update ViewController.swift as follows:

Assuming that you have copied the scan.imageset file in

"samples/swift/complete_pdf_viewer_swift/Sources/Assets.xcassets/" folder to

"pdfreader/pdfreader/Assets.xcassets" folder.

import UIKit

import FoxitRDK

import uiextensionsDynamic

import FoxitPDFScanUI

class ViewController: UIViewController {

 var extensionsManager: UIExtensionsManager!

 var openScanBtn: UIButton!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Get the path of a PDF.

 let pdfPath = Bundle.main.path(forResource: "Sample", ofType: "pdf")!

 // Initialize a FSPDFViewCtrl object with the size of the entire screen.

 var pdfViewCtrl: FSPDFViewCtrl!

 pdfViewCtrl = FSPDFViewCtrl.init(frame:self.view.bounds)

 // Set the document to display.

 pdfViewCtrl.openDoc(pdfPath, password: nil, completion: nil)

 // Add the pdfViewCtrl to the root view.

 self.view.insertSubview(pdfViewCtrl, at: 0)

 // Initialize a UIExtensionsManager object and set it to pdfViewCtrl.

 extensionsManager = UIExtensionsManager(pdfViewControl: pdfViewCtrl)

 pdfViewCtrl.extensionsManager = extensionsManager;

 // Create a scan button.

 openScanBtn = UIButton(frame: CGRect(x: view.frame.size.width - 80, y: view.frame.size.height - 140, width:

60, height: 60))

 openScanBtn.setImage(UIImage(named: "scan"), for: .normal);

Foxit PDF SDK for iOS

Developer Guide

46

 openScanBtn.addTarget(self, action: #selector(openScan(_:)), for: .touchUpInside)

 // Add the scan button to the root view.

 self.view.addSubview(openScanBtn);

 // Initialize the scan module.

 PDFScanManager.initializeScanner(0, serial2: 0);

 PDFScanManager.initializeCompression(0, serial2: 0);

 }

 @IBAction func openScan(_ sender: UIButton) {

 let VC = PDFScanManager.share().getPDFScanView();

 self.present(VC, animated: true, completion: nil);

 PDFScanManager.saveAsCallBack = { (error, savePath) -> () in

 if ((savePath) != nil) {

 if ((VC.presentingViewController) != nil) {

 VC.presentingViewController?.dismiss(animated: false, completion: nil)

 }

 VC.dismiss(animated: false, completion: nil)

 }

 }

 }

 override func didReceiveMemoryWarning() {

 super.didReceiveMemoryWarning()

 // Dispose of any resources that can be recreated.

 }

}

Run the project on an iPhone Simulator, then you will see the following window (Figure 3-16), tap the

scan button to start scanning documents.

Foxit PDF SDK for iOS

Developer Guide

47

Figure 3-16

Foxit PDF SDK for iOS

Developer Guide

48

4 Rapidly building a full-featured PDF Reader

using Mac Catalyst

The previous section introduces how to build a full-featured PDF Reader app with Foxit PDF SDK for

iOS, which can be only deployed to iPhone and iPad devices. In this section, we will use Foxit PDF

SDK for iOS (Mac Catalyst) to build a full-featured PDF Reader app in Objective-C, which users can

run on an iPhone/iPad or a Mac device. It includes the following steps:

• Create a Mac app built with Mac Catalyst

• Integrate Foxit PDF SDK for iOS (Catalyst) into your apps

• Initialize Foxit PDF SDK for iOS (Catalyst)

• Display a PDF document using FSPDFViewCtrl

• Build a full-featured PDF Reader with UI Extensions Component

4.1.1 Create a Mac app built with Mac Catalyst

In this section, we use Mac Catalyst to create a Mac app with Xcode 12.0.1. Please refer to section

3.1.1 "Create a new iOS project in Objective-C" to create a Mac project named "pdfreader_catalyst".

4.1.2 Integrate Foxit PDF SDK for iOS (Catalyst) into your apps

We will integrate the default built-in UI of the SDK into the example project. For simplicity and

convenience, this example project will directly use UI Extensions component, instead of source code

project. We only need to add the following library files to the pdfreader_catalyst project.

• FoxitRDK.xcframework

• uiextensionsDynamic.xcframework

• (optional) FoxitPDFScanUI.framework (Required by the scan module. Only support iOS platform,

and does not support macOS platform)

To add the above three dynamic framework files into the pdfreader_catalyst project, please follow

the steps below:

Foxit PDF SDK for iOS

Developer Guide

49

a) Add support for Mac. Left-click the project, find Deployment Info in the General tab, select

the Mac checkbox as shown in Figure 4-1. (If your app supports iPhone/iPad only, the

checkbox is unavailable.)

Figure 4-1

b) Drag the FoxitRDK.xcframework, uiextensionsDynamic.xcframework and

FoxitPDFScanUI.framework in the "libs" folder of the download package to the

pdfreader_catalyst project.

Note: Make sure to check the "Copy items if needed" option when dragging the framework (See

Figure 4-2).

Figure 4-2

Foxit PDF SDK for iOS

Developer Guide

50

c) Embed the dynamic frameworks. Left-click the project, find Frameworks, Libraries, and

Embedded Content in the General tab, and then choose "Embed & Sign" and the

supported platforms as shown in Figure 4-3.

Note: The FoxitPDFScanUI.framework only support iOS platform.

Figure 4-3

d) Check for Framework search paths. Left-click the project, find Search Paths in the Build

Settings tab, check if the Framework search paths is set, if not, please set it correctly. (See

Figure 4-4)

Note: You may need to set the $(PROJECT_DIR) to be recursive. Just double click the path and set it.

Figure 4-4

Now, we have added "FoxitRDK.xcframework", "uiextensionsDynamic.xcframework" and

"FoxitPDFScanUI.framework" to the pdfreader_catalyst project successfully.

Foxit PDF SDK for iOS

Developer Guide

51

4.1.3 Initialize Foxit PDF SDK for iOS (Catalyst)

To initialize Foxit PDF SDK for iOS (Catalyst), it is exactly the same as the section 3.1.3 "Initialize Foxit

PDF SDK for iOS".

4.1.4 Display a PDF document using FSPDFViewCtrl

To display a PDF document, it is exactly the same as the section 3.1.4 "Display a PDF document using

FSPDFViewCtrl". Add a PDF file to the project, and add the following code to ViewController.m

referring to "Display a PDF document using FSPDFViewCtrl".

Update ViewController.m as follows:

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

@interface ViewController ()

@end

@implementation ViewController

- (void)viewDidLoad {

 [super viewDidLoad];

 // Get the path of a PDF.

 NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

 // Initialize a FSPDFViewCtrl object with the size of the entire screen.

 FSPDFViewCtrl* pdfViewCtrl;

 pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

 // Open an unencrypted PDF document.

 [pdfViewCtrl openDoc:pdfPath password:nil completion:nil];

 // Add the pdfViewCtrl to the root view.

 [self.view addSubview:pdfViewCtrl];

}

- (void)didReceiveMemoryWarning {

 [super didReceiveMemoryWarning];

 // Dispose of any resources that can be recreated.

}

@end

Foxit PDF SDK for iOS

Developer Guide

52

Then, build and run the project. This project can be run on an iPhone/iPad, or a Mac. In this section,

select "My Mac" as the destination and run the project. After building the project successfully, you

will see that the "Sample.pdf" document is displayed as shown in Figure 4-5.

Note: You may need to register your Mac using a development provisioning profile which allows your app

to launch on devices and use certain app services during development.

Figure 4-5

4.1.5 Build a full-featured PDF Reader with UI Extensions Component

To build a full-featured PDF Reader, it is similar to the section 3.1.5 "Build a full-featured PDF Reader

with UI Extensions Component". Update the ViewController.m as follows:

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

#import <uiextensionsDynamic/uiextensionsDynamic.h>

@interface ViewController ()

@end

@implementation ViewController

{

 UIExtensionsManager* extensionsManager;

}

Foxit PDF SDK for iOS

Developer Guide

53

- (void)viewDidLoad {

 [super viewDidLoad];

 // Get the path of a PDF.

 NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

 // Initialize a FSPDFViewCtrl object with the size of the entire screen.

 FSPDFViewCtrl* pdfViewCtrl;

 pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

 // Open an unencrypted PDF document.

 [pdfViewCtrl openDoc:pdfPath password:nil completion:nil];

 // Add the pdfViewCtrl to the root view.

 [self.view addSubview:pdfViewCtrl];

 // Instantiate a UIExtensionsManager object and set it to pdfViewCtrl

 extensionsManager = [[UIExtensionsManager alloc] initWithPDFViewControl:pdfViewCtrl];

 pdfViewCtrl.extensionsManager = extensionsManager;

}

- (void)didReceiveMemoryWarning {

 [super didReceiveMemoryWarning];

 // Dispose of any resources that can be recreated.

}

@end

Then, build and run the project on your Mac. After building the project successfully, you will see that

the "Sample.pdf" document is displayed as shown in Figure 4-6.

Foxit PDF SDK for iOS

Developer Guide

54

Figure 4-6

Foxit PDF SDK for iOS

Developer Guide

55

5 Customizing User Interface

Foxit PDF SDK for iOS provides a simple, clean and friendly user interface for developers to quickly

build a full-featured PDF app without needing to take much time on the design. Furthermore,

customizing the user interface is straightforward. Foxit PDF SDK for iOS provides the source code of

the UI Extensions Component that contains ready-to-use UI module implementations, which lets the

developers have full control of styling the appearance as desired.

From version 4.0, developers can flexibly customize the features they want through a configuration

file.

From version 5.0, every element in the built-in UI can be configurable. More advanced APIs and

more powerful configuration file are provided for developers to further customize the UI elements,

such as showing or hiding a specific panel, top/bottom toolbar, the items in the top toolbar, and the

items in the View setting bar and More Menu view.

From version 6.3, the configuration file has been enhanced which provides more optional settings to

customize the UI including the rights management and the properties of UI elements.

The following section will introduce how to customize the feature modules, rights management and

UI elements through a configuration file, or APIs, or the source code.

5.1 Customize the UI through a configuration file

Through a configuration file, developers can easily choose the features module, set the rights

management and the properties of UI elements without needing to write any additional code or

redesign the app's UI.

5.1.1 Introduction to JSON file

The configuration file can be provided as a JSON file or implemented directly in code. We

recommend you to use the JSON format which is more intuitive and clearer to view and configure

the items.

You can refer to the JSON file found in "samples\complete_pdf_viewer\Source\Resource\" folder of

Foxit PDF SDK for iOS package. It looks like as follows:

Foxit PDF SDK for iOS

Developer Guide

56

{

 "modules": {

 "readingbookmark": true,

 "outline": true,

 "annotations": {

 "highlight": true,

 "underline": true,

 "squiggly": true,

 "strikeout": true,

 "insert": true,

 "replace": true,

 "line": true,

 "rectangle": true,

 "oval": true,

 "arrow": true,

 "pencil": true,

 "eraser": true,

 "typewriter": true,

 "textbox": true,

 "callout": true,

 "note": true,

 "stamp": true,

 "polygon": true,

 "cloud": true,

 "polyline": true,

 "measure": true,

 "image": true,

 "audio": true,

 "video": true,

 "redaction": true

 },

 "thumbnail": true,

 "attachment": true,

 "signature": true,

 "fillSign": true,

 "search": true,

 "navigation": true,

 "form": true,

 "selection": true,

 "encryption": true,

 "multipleSelection": true

 },

 "permissions": {

 "runJavaScript" : true,

 "copyText" : true,

 "disableLink" : false

 },

 "uiSettings": {

 "pageMode":"Single",

 "continuous":false,

 "colorMode" : "Normal",

Foxit PDF SDK for iOS

Developer Guide

57

 "zoomMode" : "FitWidth",

 "mapForegroundColor" : "#5d5b71",

 "mapBackgroundColor" : "#00001b",

 "reflowBackgroundColor":"#ffffff",

 "disableFormNavigationBar" : false,

 "highlightForm" : true,

 "highlightLink" : true,

 "highlightLinkColor" : "#16007fff",

 "highlightFormColor":"#200066cc",

 "fullscreen" : true,

 "enableTopbarDraggable" : 2,

 "enableHandwritingRecognition" : false,

 "annotations": {

 "continuouslyAdd" : true,

 "highlight": {

 "color" : "#ffff00",

 "opacity" : 1.0

 },

 "areaHighlight": {

 "color" : "#ffff00",

 "opacity" : 1.0

 },

 "underline": {

 "color" : "#66cc33",

 "opacity" : 1.0

 },

 "squiggly": {

 "color" : "#993399",

 "opacity" : 1.0

 },

 "strikeout": {

 "color" : "#ff0000",

 "opacity" : 1.0

 },

 "insert": {

 "color" : "#993399",

 "opacity" : 1.0

 },

 "replace": {

 "color" : "#0000ff",

 "opacity" : 1.0

 },

 "line": {

 "color" : "#ff0000",

 "opacity" : 1.0,

 "thickness" : 2

 },

 "rectangle": {

 "color" : "#ff0000",

 "fillColor" : "#00FFFFFF",

Foxit PDF SDK for iOS

Developer Guide

58

 "opacity" : 1.0,

 "thickness" : 2

 },

 "oval": {

 "color" : "#ff0000",

 "fillColor" : "#00FFFFFF",

 "opacity" : 1.0,

 "thickness" : 2

 },

 "arrow": {

 "color" : "#ff0000",

 "opacity" : 1.0,

 "thickness" : 2

 },

 "pencil": {

 "color" : "#ff0000",

 "opacity" : 1.0,

 "thickness" : 2

 },

 "highlighter": {

 "color" : "#ffff00",

 "opacity" : 0.5,

 "thickness" : 12

 },

 "polygon": {

 "color" : "#ff0000",

 "fillColor" : "#00FFFFFF",

 "opacity" : 1.0,

 "thickness" : 2

 },

 "cloud": {

 "color" : "#ff0000",

 "fillColor" : "#00FFFFFF",

 "opacity" : 1.0,

 "thickness" : 2

 },

 "polyline": {

 "color" : "#ff0000",

 "opacity" : 1.0,

 "thickness" : 2

 },

 "typewriter": {

 "textColor" : "#0000ff",

 "opacity" : 1.0,

 "textFace" : "Courier",

 "textSize" : 18.0

 },

 "textbox": {

 "color" : "#ff0000",

Foxit PDF SDK for iOS

Developer Guide

59

 "textColor": "#0000ff",

 "opacity" : 1.0,

 "textFace" : "Courier",

 "textSize" : 18.0

 },

 "callout": {

 "color": "#ff0000",

 "textColor": "#0000ff",

 "opacity" : 1.0,

 "textFace" : "Courier",

 "textSize" : 18.0

 },

 "note": {

 "color" : "#ff0000",

 "opacity" : 1.0,

 "icon" : "Comment"

 },

 "attachment": {

 "color" : "#ff0000",

 "opacity" : 1.0,

 "icon" : "Pushpin"

 },

 "image": {

 "rotation" : 0,

 "opacity" : 1.0

 },

 "measure": {

 "color" : "#ff0000",

 "opacity" : 1.0,

 "thickness" : 2,

 "scaleFromUnit" : "inch",

 "scaleToUnit" : "inch",

 "scaleFromValue" : 1,

 "scaleToValue" : 1

 },

 "redaction": {

 "fillColor" : "#000000",

 "textColor": "#ff0000",

 "textFace" : "Courier",

 "textSize" : 12

 }

 },

 "form": {

 "textField": {

 "textColor": "#000000",

 "textFace": "Courier",

 "textSize": 0

 },

 "checkBox": {

 "textColor": "#000000"

 },

Foxit PDF SDK for iOS

Developer Guide

60

 "radioButton": {

 "textColor": "#000000"

 },

 "comboBox": {

 "textColor": "#000000",

 "textFace": "Courier",

 "textSize": 0,

 "customText": false

 },

 "listBox": {

 "textColor": "#000000",

 "textFace": "Courier",

 "textSize": 0,

 "multipleSelection": false

 }

 },

 "signature": {

 "color" : "#000000",

 "thickness" : 4

 }

 }

}

Note:

• The values in the above JSON file are the default settings for the configuration items. If some

configuration items are not in the JSON file, the default settings will be used. For example, if you

comment out ""highlight": true,", it is still enabled.

• Only the attachment annotation is not controlled by the subitems in "annotations". Click the

Home button at the top toolbar to select the Comment, then you can find the attachment

annotation, which is as shown in Figure 5-1.

""attachment": true," controls the attachments panel and attachment annotation. If you set it to

"false", both of them will be disabled. If you want to hide all the tools in the Comment, you should

set both "annotations" and "attachment" to "false".

Foxit PDF SDK for iOS

Developer Guide

61

Figure 5-1

5.1.2 Configuration Items Description

The JSON configuration file includes three parts: feature modules, rights management, and UI

settings (for example, UI elements properties). This section will set forth the configuration items in

detail.

Configure feature module

The value type of the feature module items is bool, where "true" means that the feature module will

be enabled, and "false" means that the feature module will be disabled. The default value is "true".

Feature Module Description

readingbookmark User-defined bookmark

outline PDF document bookmark

Foxit PDF SDK for iOS

Developer Guide

62

annotations

(highlight, underline, squiggly,

strikeout, insert, replace, line,

rectangle, oval, arrow, pencil,

eraser, typewriter, textbox, callout,

note, stamp, polygon, cloud,

polyline, measure, image, audio,

video, redaction)

Annotation module collection

thumbnail PDF page thumbnail display and page management

attachment PDF document attachments and attachment annotations

signature Digital signatures and handwritten signatures

fillSign Fill flat forms (i.e. non-interactive forms) with text and

symbols.

search Text search

navigation PDF page navigation

form Form Filling and form data importing and exporting

selection Text selection

encryption PDF encryption

multipleSelection Multiple annotations selection

Configure rights management

The value type of the configuration items is bool, where "true" means that the permission will be

enabled, and "false" means that the permission will be disabled. The default value of runJavaScript

and copyText is "true", and the default value of disableLink is "false".

Rights Management Description

runJavaScript whether to allow to execute JavaScript

copyText whether to allow to copy text

disableLink whether to disable hyperlink

Configure UI settings

UI Items Description/

Property

Items

Value

Type

Available Value Default

value

Note

pageMode Page display

mode

String Single/

Facing/

CoverLeft/

Single For dynamic XFA

files, it doesn't

Foxit PDF SDK for iOS

Developer Guide

63

UI Items Description/

Property

Items

Value

Type

Available Value Default

value

Note

CoverMiddle/

CoverRight/

Reflow

support Reflow

mode.

continuous Whether to

view pages

continuously

Bool true/false false True means

continuous pages,

false means

discontinuous

pages. It is invalid

for "Reflow" mode.

zoomMode Page zoom

mode

String FitWidth/FitPage FitWidth

colorMode Page color

display mode

String Normal/Night/M

ap

Normal "Night" is a special

"Map" mode.

mapForegroundColor Foreground

color of page

display

RGB --- #5d5b71 It is vaild only when

"colorMode" is set to

"Map".

mapBackgroundColor Background

color of page

dispay

RGB --- #00001b It is vaild only when

"colorMode" is set to

"Map".

reflowBackgroundColor Background

color of

reflow page

RGB --- #ffffff

disableFormNavigationB

ar

Whether to

disable the

supplementa

ry navigation

bar of the

form

Bool true/false false

highlightForm Whether to

highlight

form field

Bool true/false true

highlightFormColor The highlight

color of

forms

ARGB #200066cc It include alpha

channel, and it is

Foxit PDF SDK for iOS

Developer Guide

64

UI Items Description/

Property

Items

Value

Type

Available Value Default

value

Note

invalid for dynamic

xfa document.

highlightLink Whether to

highlight

hyperlink

Bool true/false true

highlightLinkColor The highlight

color of links

ARGB #16007fff It include alpha

channel.

fullscreen Whether to

display in full

screen mode

Bool true/false true It will be in full

screen mode

immediately when

opening a document

if "fullscreen" is set

to "true".

If the user clicks on

the page, the toolbar

will be displayed.

After 5 seconds, if it

is in full screen

mode, the toolbar

and other auxiliary

tool buttons will be

hidden

automatically.

enableTopbarDraggable Whether to

enable

dragging

topbar

Integer 0,1,2,3 2 0: the topbar

dragging is disabled.

1: the topbar

dragging is enabled

only for iPhone.

2: the topbar

dragging is enabled

only for iPad.

3: the topbar

dragging is enabled

for both iPhone and

iPad.

Foxit PDF SDK for iOS

Developer Guide

65

UI Items Description/

Property

Items

Value

Type

Available Value Default

value

Note

enableHandwritingRecog

nition

Whether to

enable

handwriting

(ink)

recognition

Bool true/false false

annotation

s

continuous

lyAdd

 Bool true/false true Whether to add

annotation

continuously

highlight color RGB #ffff00

opacity numeri

c

[0.0-1.0] 1.0

areaHighlig

ht

color RGB #ffff00

opacity numeri

c

[0.0-1.0] 1.0

underline color RGB #66cc33

opacity numeri

c

[0.0-1.0] 1.0

squiggly color RGB #993399

opacity numeri

c

[0.0-1.0] 1.0

strikeout color RGB #ff0000

opacity numeri

c

[0.0-1.0] 1.0

insert color RGB #993399

opacity numeri

c

[0.0-1.0] 1.0

replace color RGB #0000ff

opacity numeri

c

[0.0-1.0] 1.0

line color RGB #ff0000

opacity numeri

c

[0.0-1.0] 1.0

thickness numeri

c

[1-12] 2

rectangle color RGB #ff0000

Foxit PDF SDK for iOS

Developer Guide

66

UI Items Description/

Property

Items

Value

Type

Available Value Default

value

Note

fillColor RGB #00FFFFFF

opacity numeri

c

[0.0-1.0] 1.0

thickness numeri

c

[1-12] 2

oval color RGB #ff0000

fillColor RGB #00FFFFFF

opacity numeri

c

[0.0-1.0] 1.0

thickness numeri

c

[1-12] 2

arrow color RGB #ff0000

opacity numeri

c

[0.0-1.0] 1.0

thickness numeri

c

[1-12] 2

pencil color RGB #ff0000

opacity numeri

c

[0.0-1.0] 1.0

thickness numeri

c

[1-12] 2

highlighter color RGB #ffff00

opacity numeri

c

[0.0-1.0] 0.5

thickness numeri

c

[1-12] 12

polygon color RGB #ff0000

fillColor RGB #00FFFFFF

opacity numeri

c

[0.0-1.0] 1.0

thickness numeri

c

[1-12] 2

cloud color RGB #ff0000

fillColor RGB #00FFFFFF

Foxit PDF SDK for iOS

Developer Guide

67

UI Items Description/

Property

Items

Value

Type

Available Value Default

value

Note

opacity numeri

c

[0.0-1.0] 1.0

thickness numeri

c

[1-12] 2

polyline color RGB #ff0000

opacity numeri

c

[0.0-1.0] 1.0

thickness numeri

c

[1-12] 2

typewriter textColor RGB #0000ff

opacity numeri

c

[0.0-1.0] 1.0

textFace String Courier/

Courier-Bold/

Courier-

BoldOblique/

Courier-

Oblique/

Helvetica/

Helvetica-Bold/

Helvetica-

BoldOblique/

Helvetica-

Oblique/

Times-Roman/

Times-Bold/

Times-Italic/

Times-BoldItalic

Courier Text font name.

If set to an invalid

value, the default

value will be used.

textSize Integer >=1 18

textbox color RGB #ff0000

textColor RGB #0000ff

opacity numeri

c

[0.0-1.0] 1.0

textFace String Courier/

Courier-Bold/

Courier Text font name.

Foxit PDF SDK for iOS

Developer Guide

68

UI Items Description/

Property

Items

Value

Type

Available Value Default

value

Note

Courier-

BoldOblique/

Courier-

Oblique/

Helvetica/

Helvetica-Bold/

Helvetica-

BoldOblique/

Helvetica-

Oblique/

Times-Roman/

Times-Bold/

Times-Italic/

Times-BoldItalic

If set to an invalid

value, the default

value will be used.

textSize Integer >=1 18

callout color RGB #ff0000

textColor RGB #0000ff

opacity numeri

c

[0.0-1.0] 1.0

textFace String Courier/

Courier-Bold/

Courier-

BoldOblique/

Courier-

Oblique/

Helvetica/

Helvetica-Bold/

Helvetica-

BoldOblique/

Helvetica-

Oblique/

Times-Roman/

Times-Bold/

Times-Italic/

Times-BoldItalic

Courier Text font name.

If set to an invalid

value, the default

value will be used.

Foxit PDF SDK for iOS

Developer Guide

69

UI Items Description/

Property

Items

Value

Type

Available Value Default

value

Note

textSize Integer >=1 18

note color RGB #ff0000

opacity numeri

c

[0.0-1.0] 1.0

icon String Comment/

Key/

Note/

Help/

NewParagraph/

Paragraph/

Insert

Comment If set to an invalid

value, the default

value will be used.

attachmen

t

color RGB #ff0000

opacity numeri

c

[0.0-1.0] 1.0

icon String Graph/

PushPin/

Paperclip/

Tag

PushPin

image rotation numeri

c

0/90/180/270 0 If set to an invalid

value, the default

value will be used.

opacity numeri

c

[0.0-1.0] 1.0

measure color RGB ff0000

opacity numeri

c

[0.0-1.0] 1.0

thickness numeri

c

[1-12] 2

scaleFromUn

it

String pt/m/cm/mm/in

ch/p/ft/yd

inch The original unit of

the scale.

If set to an invalid

value, the default

value will be used.

scaleToUnit String pt/m/cm/mm/in

ch/p/ft/yd

inch The target unit of

the scale.

Foxit PDF SDK for iOS

Developer Guide

70

UI Items Description/

Property

Items

Value

Type

Available Value Default

value

Note

If set to an invalid

value, the default

value will be used.

scaleFromVal

ue

numeri

c

 1 The original value of

the scale

scaleToValue numeri

c

 1 The target value of

the scale

redaction fillColor RGB #000000

textColor RGB #ff0000

textFace String Courier/

Helvetica/

Times

Courier Text font name.

If set to an invalid

value, the default

value will be used.

textSize Integer >=1 12

form

textField textColor RGB #000000

textFace String Courier/

Helvetica/

Times

Courier Text font name.

If set to an invalid

value, the default

value will be used.

textSize Integer >=0 0 0 means adjusting

the font size

automatically.

checkBox textColor RGB #000000

radioButto

n

textColor RGB #000000

comboBox textColor RGB #000000

textFace String Courier/

Helvetica/

Times

Courier Text font name.

If set to an invalid

value, the default

value will be used.

textSize Integer >=0 0 0 means adjusting

the font size

automatically.

customText false Whether to allow to

customize text.

Foxit PDF SDK for iOS

Developer Guide

71

UI Items Description/

Property

Items

Value

Type

Available Value Default

value

Note

listBox textColor RGB #000000

textFace String Courier/

Helvetica/

Times

Courier Text font name.

If set to an invalid

value, the default

value will be used.

textSize Integer >=0 0 0 means adjusting

the font size

automatically.

multipleSelec

tion

 false Whether to allow to

support multiple

selection.

signature color RGB #000000

thickness numeri

c

[1-12] 4

5.1.3 Instantiate a UIExtensionsManager object with the configuration file

In section 3.1.5 (Objective-C) and section 3.2.5 (Swift), we have already introduced how to instantiate

UIExtensionsManager, and in this way all the built-in UI framework would be loaded by default. In

this section, we will provide another method to instantiate UIExtensionsManager that uses the

configuration file, so that developers can easily customize the UI as desired.

Please refer to the following code to instantiate a UIExtensionsManager object with the

configuration file.

Note: You should prepare the JSON configuration file, and then add it to your project. Here, we assume

that you have already added a JSON file named "uiextensions_config.json".

In ViewController.m: (Objective-C)

UIExtensionsManager* extensionsManager;

...

// Instantiate a FSPDFViewCtrl object with the size of the entire screen.

FSPDFViewCtrl* pdfViewCtrl;

pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

// Get the path of the JSON configuration file.

Foxit PDF SDK for iOS

Developer Guide

72

NSString* configPath = [[NSBundle mainBundle] pathForResource:@"uiextensions_config" ofType:@"json"];

// Initialize a UIExtensionsManager object and set it to pdfViewCtrl.

extensionsManager = [[UIExtensionsManager alloc] initWithPDFViewControl:pdfViewCtrl configuration:[NSData

dataWithContentsOfFile:configPath]];

if (nil == extensionsManager) {

 return;

}

pdfViewCtrl.extensionsManager = extensionsManager;

In ViewController.swift: (Swift)

var extensionsManager: UIExtensionsManager!

...

// Initialize a FSPDFViewCtrl object with the size of the entire screen

var pdfViewCtrl: FSPDFViewCtrl!

pdfViewCtrl = FSPDFViewCtrl.init(frame:self.view.bounds)

// Get the path of the JSON configuration file.

let configPath = Bundle.main.path(forResource: "uiextensions_config", ofType: "json")

var data: Data?

if nil != configPath {

 data = NSData(contentsOfFile: configPath!) as Data?

}

// Initialize a UIExtensionsManager object and set it to pdfViewCtrl.

extensionsManager = UIExtensionsManager.init(pdfViewControl: pdfViewCtrl, configuration: data)

if nil == extensionsMgr {

 return

}

pdfViewCtrl.extensionsManager = extensionsManager;

Note: Here, we use a configuration file to instantiate the UIExtensionsManager. If you do not want to use

configuration file, please refer to the section 3.1.5 (Objective-C) and section 3.2.5 (Swift).

5.1.4 Examples for customizing UI through a configuration file

In this section, we will show you how to customize feature modules, rights management and UI

settings (for example, UI elements properties) in your project. You will find it is extremely easy! You

only need to modify the configuration file. Below you can see some examples of how to do it.

Foxit PDF SDK for iOS

Developer Guide

73

Note: For your convenience, we will try it in the "complete_pdf_viewer" (Objective-C) and

"complete_pdf_viewer_swift" (Swift) demos found in the "samples" folder.

Open the demos in Xcode. Find the configuration file "uiextensions_config.json" under

"complete_pdf_viewer\Resource" or "complete_pdf_viewer_swift\Resource".

Example1: Disable "readingbookmark" and "navigation" feature modules.

In the JSON file, set the values of "readingbookmark" and "navigation" to "false" as follows:

"readingbookmark": false,

"navigation": false,

Then, rebuild and run the demo to see the result. Following lists the comparison diagrams:

Before: After:

The "readingbookmark" and "navigation" feature modules are removed.

Example2: Disable hyperlinks.

In the JSON file, set the value of "disableLink" to "true" as follows:

"permissions": {

 "runJavaScript": true,

 "copyText": true,

 "disableLink": true

},

Foxit PDF SDK for iOS

Developer Guide

74

Then, rebuild and run the demo to see the result, and you will find that there is no any response

when clicking the hyperlinks.

Example3: Set the highlight color from yellow to red.

In the JSON file, set the color property of "highlight" to "#ff0000" as follows:

"highlight": {

 "color" : "#ff0000",

 "opacity" : 1.0

},

Then, rebuild and run the demo to see the result. Following lists the comparison diagrams:

Before: After:

The highlight color has been changed to red.

5.2 Customize UI elements through APIs

In version 4.0, Foxit PDF SDK for iOS supports customizing to show or hide the whole top or bottom

toolbar, and from version 5.0, it provides APIs to customize to show or hide a specific panel, the

items in the top/bottom toolbar, View setting bar and More Menu view, which is convenient for

developers to modify the UI elements in the context of the built-in UI framework.

From version 8.0, the built-in UI in the UI Extensions Component has changed dramatically.

Foxit PDF SDK for iOS

Developer Guide

75

Note: For your convenience, we will show you how to customize UI elements through APIs in the

"complete_pdf_viewer" (Objective-C) and "complete_pdf_viewer_swift" (Swift) demos found in the

"samples" folder. We assume that you have not modified the "uiextensions_config.json" file in the demos,

which means that all of the built-in UI in the UI Extensions Component are enabled.

5.2.1 Customize to hide top/bottom toolbar

In the top/bottom toolbar (See Figure 5-2), you can do the following operations:

1. Show or hide the top/bottom toolbar.

2. Show or hide a specific item in the top/bottom toolbar.

3. Remove a specific tab in the center of the top toolbar.

4. Add a custom item at any position.

Figure 5-2

Note:

1. For iPad device, it has removed the bottom toolbar.

Foxit PDF SDK for iOS

Developer Guide

76

2. For iPhone device, the bottom toolbar is only one part, and the top toolbar is divided into

two parts, so that there are three parts for the toolbar, and each part has a separate index.

For iPad device, it has no bottom toolbar.

Table 5-1 lists the related APIs which are used to customize the top/bottom toolbar.

 Table 5-1

(void)enableTopToolbar:(BOOL)isEnabled Enable or disable top toolbar.

(void)enableBottomToolbar:(BOOL)isEnabled Enable or disable bottom toolbar.

(void)setToolbarItemHiddenWithTag:

(FS_TOOLBAR_ITEM_TAG)itemTag

hidden:(BOOL)isHidden

Show or hide the item in the top/bottom

toolbar.

The value of the parameter "itemTag" in setToolbarItemHiddenWithTag interface can be set as

follows, which maps the features in the top/bottom toolbar.

Item name itemTag

Back FS_TOOLBAR_ITEM_TAG_BACK

Search FS_TOOLBAR_ITEM_TAG_SEARCH

More FS_TOOLBAR_ITEM_TAG_MORE

Home FS_TOOLBAR_ITEM_TAG_HOME

Edit FS_TOOLBAR_ITEM_TAG_EDIT

Comment FS_TOOLBAR_ITEM_TAG_COMMENT

Drawing FS_TOOLBAR_ITEM_TAG_DRAWING

Form FS_TOOLBAR_ITEM_TAG_FORM

Fill & Sign FS_TOOLBAR_ITEM_TAG_SIGN

Panel FS_TOOLBAR_ITEM_TAG_PANEL

View

FS_TOOLBAR_ITEM_TAG_VIEW

or

FS_TOOLBAR_ITEM_TAG_VIEW_SETTINGS
thumbnail FS_TOOLBAR_ITEM_TAG_THUMBNAIL

Bookmark FS_TOOLBAR_ITEM_TAG_READING_BOOKMARK

In the following examples, we will show you how to customize the top/bottom toolbar through APIs

in the "complete_pdf_viewer" (Objective-C) and "complete_pdf_viewer_swift" (Swift) demos found

in the "samples" folder.

Foxit PDF SDK for iOS

Developer Guide

77

Open the demos in Xcode. Add the sample code to the "ViewController.m" (Objective-C) or

"TabsViewController.swift" (Swift) (after the code that initializes UIExtensionsManager).

Note: The built-in UI is a bit different on iPhone and iPad. Most of the following examples are applicable

for iPhone and iPad, and only one is applicable for iPhone. In this guide, if the custom results on iPhone

and iPad are similar, we only list the result on iPhone.

Example1: Hide the whole top toolbar. (For iPhone and iPad)

Objective-C:

[self.extensionsMgr enableTopToolbar:false];

Swift:

extensionsManager.enableTopToolbar(false)

Before: After:

Example2: Hide the whole bottom toolbar. (Only for iPhone)

Objective-C:

[self.extensionsMgr enableBottomToolbar:false];

Swift:

extensionsManager.enableBottomToolbar(false)

Before: After:

Foxit PDF SDK for iOS

Developer Guide

78

Example3: Hide the "More menu" item in the top toolbar. (For iPhone and iPad)

Objective-C:

[self.extensionsMgr setToolbarItemHiddenWithTag:FS_TOOLBAR_ITEM_TAG_MORE hidden:YES];

Swift:

extensionsManager.setToolbarItemHiddenWithTag(FS_TOOLBAR_ITEM_TAG_MORE, hidden: true);

Before: After:

Foxit PDF SDK for iOS

Developer Guide

79

Example4: Hide the "Form" tab from the list in the center of the top toolbar. (For iPhone

and iPad)

Objective-C:

[self.extensionsMgr setToolbarItemHiddenWithTag:FS_TOOLBAR_ITEM_TAG_FORM hidden:YES];

Swift:

extensionsManager.setToolbarItemHiddenWithTag(FS_TOOLBAR_ITEM_TAG_FORM, hidden: true)

Before: After:

Example5: Hide the "View" item in the bottom toolbar for iPhone, or hide the "View" tab

from the list in the center of the top toolbar for iPad. (For iPhone and iPad)

Objective-C:

[self.extensionsMgr setToolbarItemHiddenWithTag:FS_TOOLBAR_ITEM_TAG_VIEW hidden:YES];

or

[self.extensionsMgr setToolbarItemHiddenWithTag:FS_TOOLBAR_ITEM_TAG_VIEW_SETTINGS hidden:YES];

Swift:

extensionsManager.setToolbarItemHiddenWithTag(FS_TOOLBAR_ITEM_TAG_VIEW, hidden: true)

or

extensionsManager.setToolbarItemHiddenWithTag(FS_TOOLBAR_ITEM_TAG_VIEW_SETTINGS, hidden: true)

for iPhone:

Foxit PDF SDK for iOS

Developer Guide

80

Before: After:

for iPad:

Before: After:

Example6: Add an item in the left top toolbar at the second position. (For Phone and

Tablet) (assume that you have added an image named "snapshot.png" to the complete_pdf_viewer

project)

Foxit PDF SDK for iOS

Developer Guide

81

FSMainTopbar *topbar = self.extensionsMgr.topToolbar;

NSMutableArray *items = topbar.itemsForPositionLeft.mutableCopy;

UIButton *btn = [UIButton new];

[btn setImage:[[UIImage imageNamed:@"snapshot"] imageWithTintColor:[UIColor whiteColor]]

forState:UIControlStateNormal];

FSMainToolbarItem *item = [[FSMainToolbarItem alloc] initWithCustomView:btn];

[items insertObject:item atIndex:1];

topbar.itemsForPositionLeft = items;

The result after running the demo:

Example7: Add an item in the right top toolbar at the first position. (For Phone and

Tablet) (assume that you have added an image named "snapshot.png" to the complete_pdf_viewer

project)

FSMainTopbar *topbar = self.extensionsMgr.topToolbar;

NSMutableArray *items = topbar.itemsForPositionRight.mutableCopy;

UIButton *btn = [UIButton new];

[btn setImage:[[UIImage imageNamed:@"snapshot"] imageWithTintColor:[UIColor whiteColor]]

forState:UIControlStateNormal];

FSMainToolbarItem *item = [[FSMainToolbarItem alloc] initWithCustomView:btn];

[items insertObject:item atIndex:0];

topbar.itemsForPositionRight = items;

The result after running the demo:

Foxit PDF SDK for iOS

Developer Guide

82

Example8: Add an item to the bottom toolbar at the first position. (Only for Phone)

(assume that you have added an image named "snapshot.png" to the complete_pdf_viewer project)

FSMainBottombar *bottomBar = self.extensionsMgr.bottomToolbar;

NSMutableArray *items = bottomBar.itemsForPositionCenter.mutableCopy;

UIButton *btn = [UIButton new];

[btn setImage:[UIImage imageNamed:@"snapshot"] forState:UIControlStateNormal];

FSMainToolbarItem *item = [[FSMainToolbarItem alloc] initWithCustomView:btn];

[items insertObject:item atIndex:0];

bottomBar.itemsForPositionCenter = items;

The result after running the demo:

Foxit PDF SDK for iOS

Developer Guide

83

5.2.2 Customize to hide a specific Panel

To hide a specific panel (See Figure 5-3, includes "Bookmarks", "Outline", "Annotations",

"Attachments" and "Digital Signatures" panels, just taps at the bottom toolbar (for iPhone) or

taps at the left top toolbar (for iPad) to find it), you only need to use the following API:

(void)setPanelHidden:(BOOL)isHidden type:(FSPanelType)type

Foxit PDF SDK for iOS

Developer Guide

84

Figure 5-3

In this section, we only give an example to show you how to hide a specific panel through APIs in the

"complete_pdf_viewer" (Objective-C) and "complete_pdf_viewer_swift" (Swift) demos found in the

"samples" folder. Just take the "Outline" panel as an example, and for other panels, you only need to

change the FSPanelType. The corresponding relation between panels and FSPanelType are as

follows:

Panel FSPanelType

Bookmarks FSPanelTypeReadingBookmark

Outline FSPanelTypeOutline

Annotations FSPanelTypeAnnotation

Attachments FSPanelTypeAttachment

Digital Signatures FSPanelTypeDigitalSignature

Open the demos in Xcode. Add the sample code to the "ViewController.m" (Objective-C) or

"TabsViewController.swift" (Swift) (after the code that initializes UIExtensionsManager).

Note: The built-in UI is a bit different on iPhone and iPad. The following example is applicable for iPhone

and iPad, if the custom results on iPhone and iPad are similar, we only list the result on iPhone.

Foxit PDF SDK for iOS

Developer Guide

85

Example1: Hide the "Outline" panel. (For iPhone and iPad)

Objective-C:

[self.extensionsMgr.panelController setPanelHidden:true type:FSPanelTypeOutline];

Swift:

extensionsManager.panelController.setPanelHidden(true, type: .outline);

Before: After:

Foxit PDF SDK for iOS

Developer Guide

86

5.2.3 Customize to hide the UI elements in the View setting bar

To hide the UI elements in the View setting bar (See Figure 5-4, just taps at the bottom toolbar

(for iphone) or tap icon at the top toolbar to select the View (for some iPads) to find it), you only

need to use the following API:

(void)setItem:(SettingItemType)itemType hidden:(BOOL)hidden;

Figure 5-4

The value of the parameter "itemType" can be set as follows, which maps the items in the View

setting bar.

item itemType

Single page mode SINGLE

Facing mode DOUBLEPAGE

Cover Facing mode COVERPAGE

Day mode DAYMODE

Page Color PAGECOLOR

Night mode NIGHTMODE

Continuous Scrolling mode CONTINUOUS

Foxit PDF SDK for iOS

Developer Guide

87

Right to Left PAGERTL

Fit page mode FITPAGE

Fit width mode FITWIDTH

Reflow mode REFLOW

Crop mode CROPPAGE

Speak SPEECH

Auto Flip AUTOFLIP

Rotate View ROTATE

Pan and Zoom PANZOOM

In this section, we only take "Reflow" item as an example to show you how to hide the UI elements in

the View setting bar through APIs in the "complete_pdf_viewer" (Objective-C) and

"complete_pdf_viewer_swift" (Swift) demos found in the "samples" folder. For other UI elements,

you only need to change the "itemType".

Open the demos in Xcode. Add the sample code to the "ViewController.m" (Objective-C) or

"TabsViewController.swift" (Swift) (after the code that initializes UIExtensionsManager).

Example1: Hide the "Reflow" item in the View setting bar. (For Phone and Tablet)

Objective-C:

[self.extensionsMgr.settingBar setItem:REFLOW hidden:YES];

Swift:

extensionsManager.settingBar.setItem(.REFLOW, hidden: true)

for iPhone:

Before: After:

Foxit PDF SDK for iOS

Developer Guide

88

for iPad:

Before: After:

Foxit PDF SDK for iOS

Developer Guide

89

5.2.4 Customize to hide the UI elements in the More Menu view

To hide the UI elements in the More Menu view (See Figure 5-5, just taps at the right top toolbar

to find it), you can use the following APIs listed in the Table 5-2.

Table 5-2

(void)setMoreViewItemHiddenWithGroup:

(NSUInteger)groupTag hidden:(BOOL)isHidden

Set the enabled state of group according to

"groupTag".

(void)setMoreViewItemHiddenWithGroup:

(NSUInteger)groupTag

andItemTag:(NSUInteger)itemTag

hidden:(BOOL)isHidden

Set the enabled state of item according to

"groupTag" and "itemTag".

(void) setIndividualMenuItemHiddenWithItemTag:

(NSUInteger)itemTag

hidden: (BOOL)isHidden

Set visible or invisible state for the individual

group.

Figure 5-5

The values of the parameters "groupTag" and "itemTag" in the

setMoreViewItemHiddenWithGroup interface can be set as follows:

Foxit PDF SDK for iOS

Developer Guide

90

groupTag NSUInteger

TAG_GROUP_PROTECT 10

TAG_GROUP_COMMENT_FIELD 20

groupTag itemTag NSUInteger

TAG_GROUP_PROTECT

TAG_ITEM_REDACTION 10

TAG_ITEM_PASSWORD 20

TAG_ITEM_CERTIFICATE 30

TAG_GROUP_COMMENT_FIELD

TAG_ITEM_IMPORTCOMMENT 40

TAG_ITEM_EXPORTCOMMENT 50

TAG_ITEM_SUMARIZECOMMENT 60

TAG_ITEM_RESETFORM 70

TAG_ITEM_IMPORTFORM 80

TAG_ITEM_EXPORTFORM 90

The value of the parameter "itemTag" in the setIndividualMenuItemHiddenWithItemTag

interface can be set as follows:

itemTag NSUInteger

TAG_ITEM_SAVE_AS 110

TAG_ITEM_REDUCEFILESIZE 120

TAG_ITEM_WIRELESSPRINT 130

TAG_ITEM_FLATTEN 140

TAG_ITEM_SCREENCAPTURE 150

In this section, we only give three examples:

• Example1 and Example2 shows you how to hide a specific group or its item in the More

Menu view through APIs in the "complete_pdf_viewer" (Objective-C) and

"complete_pdf_viewer_swift" (Swift) demos found in the "samples" folder. Just take the

group TAG_GROUP_PROTECT and the item TAG_ITEM_REDACTION as examples, and for

other groups and items, please refer to these examples and only need to change the

parameter value in the setMoreViewItemHiddenWithGroup interface.

• Example3 shows you how to hide the item which is an individual menu item in the More

Menu view through APIs. Just take the item TAG_ITEM_FLATTEN as an example, and for

other individual menu items, please refer to this example and only need to change the

parameter value in the setIndividualMenuItemHiddenWithItemTag interface.

Foxit PDF SDK for iOS

Developer Guide

91

Open the demos in Xcode. Add the sample code to the "ViewController.m" (Objective-C) or

"TabsViewController.swift" (Swift) (after the code that initializes UIExtensionsManager).

Note: The built-in UI is a bit different on tablets and phones. The following examples are applicable for

phones and tablets, if the custom results on phones and tablets are similar, we only list the result on

phones.

Example1: Hide the group "TAG_GROUP_PROTECT" in the More Menu view. (For Phone and

Tablet)

Objective-C:

[self.extensionsMgr.more setMoreViewItemHiddenWithGroup:TAG_GROUP_PROTECT hidden:YES];

Swift:

extensionsManager.more.setMoreViewItemHiddenWithGroup(UInt(TAG_GROUP_PROTECT), hidden: true);

Before: After:

Foxit PDF SDK for iOS

Developer Guide

92

Example2: Hide the item "TAG_ITEM_REDACTION" in the More Menu view. (For Phone and

Tablet)

Objective-C:

[self.extensionsMgr.more setMoreViewItemHiddenWithGroup:TAG_GROUP_PROTECT

andItemTag:TAG_ITEM_REDACTION hidden:YES];

Swift:

extensionsManager.more.setMoreViewItemHiddenWithGroup(UInt(TAG_GROUP_PROTECT),

andItemTag:UInt(TAG_ITEM_REDACTION), hidden: true);

Before: After:

Foxit PDF SDK for iOS

Developer Guide

93

Example3: Hide the individual menu item "TAG_ITEM_FLATTEN" in the More Menu view.

(For Phone and Tablet)

Objective-C:

[self.extensionsMgr.more setIndividualMenuItemHiddenWithItemTag:TAG_ITEM_FLATTEN hidden:YES];

Swift:

extensionsManager.more.setIndividualMenuItemHiddenWithItemTag(UInt(TAG_ITEM_FLATTEN), hidden: true);

Before: After:

Foxit PDF SDK for iOS

Developer Guide

94

5.3 Customize UI implementation through source code

In the previous sections, we have introduced how to customize the user interface through a

configuration file or APIs in detail. Those changes are in the context of the built-in UI framework of

Foxit PDF SDK for iOS. If you do not want to use the ready-made UI framework, you can redesign it

through modifying the source code of the UI Extensions Component.

There is one thing to take note of. The source code of the UI Extensions Component is written in

Objective-C, so you need to use Objective-C to modify the UI layout. If you are a Swift developer and

not already familiar with Objective-C, you might only be able to customize the UI appearance that

does not need writing code, such as icons and other UI resources.

To customize the UI implementation, you need to follow these steps:

First, add the following required files into your app.

• FoxitRDK.framework – The framework that includes the Foxit PDF SDK for iOS dynamic

library and associated header files. It can be found in the "libs" folder.

• uiextensions project – It is an open source library that contains some ready-to-use UI module

implementations, which can help developers rapidly embed a fully functional PDF reader

into their iOS app. Of course, developers are not forced to use the default UI, they can freely

customize and design the UI for their specific apps through the "uiextensions" project. It can

be found in the "libs/uiextensions_src" folder.

Tip: The built-in UI customization can be done in the uiextensions project, and then you can add

the new uiextensionsDynamic.framework generated by the modified uiextensions project to

your app instead of the whole uiextensions project.

Second, find the specific code or images related to the UI that you want to customize in the

uiextensions project, then modify them based on your requirements.

Now, for your convenience, we will show you how to customize the UI implementation in

"viewer_ctrl_demo" project found in the "samples" folder.

UI Customization Example

Step 1: Add the uiextensions project into the demo.

Foxit PDF SDK for iOS

Developer Guide

95

Note: We will add the uiextensions project to the demo which is convenient for us to see the custom

results. The demo already includes FoxitRDK.framework, so we just need to add the uiextensions

project.

Load the "viewer_ctrl_demo" project in Xcode. Drag-and-drop "uiextensions.xcodeproj" found in

the "libs/uiextensions_src" of the download package into the "viewer_ctrl_demo" project as shown

in Figure 5-6.

Figure 5-6

Then, it will pop up a dialog box which prompts you whether to save the project in a new workspace

as shown in Figure 5-7. Click Save.

Figure 5-7

Foxit PDF SDK for iOS

Developer Guide

96

Save the workspace to the "samples" folder, and name "custom_viewer" as shown in Figure 5-8. Click

Save.

Figure 5-8

Now, the workspace looks like the Figure 5-9.

Figure 5-9

Congratulations! You have completed the first step.

Foxit PDF SDK for iOS

Developer Guide

97

Step 2: Find and modify the code or images related to the UI that you want to customize.

Now, we will show you a simple example that changes one button’s icon in the search panel as

shown in Figure 5-10.

Tip: If you just want to change the icons of the UI elements, you can do it in the

uiextensionsDynamic.framework directly instead of importing the source code of uiextensions project.

But the same is that you also need to find the icon's name.

Figure 5-10

To replace the icon, we only need to find the place where stores the icon for this button, then use

another icon with the same name to replace it.

An iPhone Simulator will be used as an example to run the demo. In the uiextensions project, click

"uiextensionsDynamic -> Resource -> png -> Search.xcassets" as shown in Figure 5-11. It’s easy to

find the image that we want to replace. The resource files are stored according to the features, so

you can locate the related code through the icon’s name.

Foxit PDF SDK for iOS

Developer Guide

98

Figure 5-11

Right now, just replace "search_show_list.imageset" with your own icon in the

"libs\uiextensions_src\UIExtensions\Resource\png\Search.xcassets" folder. For example, we use the

"search.imageset" of the top search button to replace it.

After replacing, firstly build and run the uiextensionsDynamic_aggregate project as shown in Figure

5-12.

Figure 5-12

Note: The uiextensions project can generate a universal ".a" library through building

uiextensions_aggregate, or generate a universal framework through building

Foxit PDF SDK for iOS

Developer Guide

99

uiextensionsDynamic_aggregate, which can be used for both simulator and iOS device. In this section,

we build uiextensionsDynamic_aggregate. The scripts used for generating the universal framework in

the uiextension project is shown in Figure 5-12.

The uiextensionsDynamic.framework in the "libs" folder of the download package will be

overwritten after building the uiextensionsDynamic_aggregate project successfully.

Then build and run the "viewer_ctrl_demo" project. After building successfully, try the search

feature and we can see that the icon of the bottom search button has changed as shown in Figure

5-13.

Figure 5-13

This is just a simple example to show how to customize the UI implementation. You can refer to it

and feel free to customize and design the UI for your specific apps through the uiextensions project.

Foxit PDF SDK for iOS

Developer Guide

100

6 Working with SDK API

Foxit PDF SDK for iOS wrapped all of the features implementations into the UI Extensions

Component. If you are interested in the detailed process of the features implementations, please go

through this section.

In this section, we will introduce a set of major features and list some examples to show you how to

implement the features using Foxit PDF SDK Core API.

6.1 Render

PDF rendering is realized through the Foxit renderer, a graphic engine that is used to render page to

a bitmap or a platform device context. Foxit PDF SDK provides APIs to set rendering options/flags,

for example set flag to decide whether to render form fields and signature, whether to draw image

anti-aliasing and path anti-aliasing. To do rendering, you can use the following APIs:

• To render page and annotations, first use function - [FSRenderer setRenderContentFlags:] to

decide whether to render page and annotation both or not, and then use function -

[FSRenderer startRender:matrix:pause:] to do the rendering. Function - [FSRenderer

startQuickRender:matrix:pause:] can also be used to render page but only for thumbnail

purpose.

• To render a single annotation, use function - [FSRenderer renderAnnot:matrix:].

• To render on a bitmap, use function - [FSRenderer

startRenderBitmap:matrix:clip_rect:interpolation:pause:].

• To render a reflowed page, use function - [FSRenderer startRenderReflowPage:matrix:pause:] .

Widget annotation is always associated with form field and form control in Foxit PDF SDK. For how

to render widget annotations, here is a recommended flow:

• After loading a PDF page, first render the page and all annotations in this page (including

widget annotations).

• Then, if use FSFiller object to fill the form, the function - [FSFiller render:matrix:renderer:]

should be used to render the focused form control instead of the function - [FSRenderer

renderAnnot:matrix:].

Example:

file:///F:/GSDK_6_2/GSDK_6.2.1/foxitpdfsdk_6_2_1_win/doc/html/classfoxit_1_1common_1_1_renderer.html%23a4b763420b6b9ea03e170b6eba7bb9164

Foxit PDF SDK for iOS

Developer Guide

101

6.1.1 How to render a specified page to a bitmap

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

...

-(FSBitmap*)renderPageToBitmap:(FSPDFPage*) pdfPage drawWidth:(int)drawPageWidth

drawHeight:(int)drawPageHeight

{

 // If the page hasn't been parsed yet, throw an exception.

 if(![pdfPage isParsed])

 @throw [NSException exceptionWithName:NSGenericException reason:@"PDF Page should be parsed

first" userInfo:nil];

 // Pepare matrix to render on the bitmap.

 FSMatrix2D* matrix = [pdfPage getDisplayMatrix:0 top:0 width:drawPageWidth height:drawPageHeight

rotate:FSRotation0];

 // Create a bitmap according to the required drawPageWidth and drawPageHeight.

 FSBitmap* bitmap = [[FSBitmap alloc] initWithWidth:drawPageWidth height:drawPageHeight

format:FSBitmapDIBRgb];

 // Fill the bitmap with white color.

 [bitmap fillRect:0xFFFFFFFF rect:nil];

 FSRenderer* renderer = [[FSRenderer alloc] initWithBitmap:bitmap is_rgb_order:YES];

 // Set the render flag, both page content and annotation will be rendered.

 [renderer setRenderContentFlags:FSRendererRenderPage | FSRendererRenderAnnot];

 // Start to render the page progressively.

 FSProgressive* progress = [renderer startRender:pdfPage matrix:matrix pause:nil];

 if(progress) {

 FSProgressiveState state = [progress resume];

 while (state == FSProgressiveToBeContinued) {

 state = [progress resume];

 }

 if(state != FSProgressiveFinished)

 return nil;

 }

 return bitmap;

}

Foxit PDF SDK for iOS

Developer Guide

102

6.1.2 How to render a specified page to a platform device context

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

...

-(void)renderPageToContext:(FSPDFPage*) pdfPage context:(CGContextRef)context

{

 // If the page hasn't been parsed yet, throw an exception.

 if(![pdfPage isParsed])

 @throw [NSException exceptionWithName:NSGenericException reason:@"PDF Page should be parsed

first" userInfo:nil];

 // We set the width of drawing page to be equal to screen width, the drawing page height is calculated according to

the ratio of page height and width.

 CGFloat scale = [UIScreen mainScreen].scale;

 int drawPageWidth = (int)[[UIScreen mainScreen] bounds].size.width * scale;

 float pageWidth = [pdfPage getWidth];

 float pageHeight = [pdfPage getHeight];

 int drawPageHeight = (int)drawPageWidth * (pageHeight/pageWidth) * scale;

 // Erase the background of context with white color.

 CGContextSaveGState(context);

 CGContextSetRGBFillColor(context, 1.0, 1.0, 1.0, 1.0);

 CGContextFillRect(context, CGRectMake(0, 0, drawPageWidth, drawPageHeight));

 // Render to screen in the device coordinate, left:0, top:0, right:drawPageWidth, bottom:drawPageHeight.

 FSMatrix2D* matrix = [pdfPage getDisplayMatrix:0 top:0 width:drawPageWidth height:drawPageHeight

rotate:FSRotation0];

 FSRenderer* renderer = [[FSRenderer alloc] initWithContext:context device_type:FSRendererDeviceDisplay];

 [renderer setRenderContentFlags:FSRendererRenderPage | FSRendererRenderAnnot];

 // Start to render the page progressively.

 FSProgressive* progress = [renderer startRender:pdfPage matrix:matrix pause:nil];

 if(progress) {

 FSProgressiveState state = [progress resume];

 while (state == FSProgressiveToBeContinued) {

 state = [progress resume];

 }

 }

Foxit PDF SDK for iOS

Developer Guide

103

 CGContextRestoreGState(context);

}

6.2 Text Page

Foxit PDF SDK provides APIs to extract, select, search and retrieve text in PDF documents. PDF text

contents are stored in FSTextPage objects which are related to a specific page. FSTextPage class can

be used to retrieve information about text in a PDF page, such as single character, single word, text

content within specified character range or rectangle and so on. It also can be used to construct

objects of other text related classes to do more operations for text contents or access specified

information from text contents:

• To search text in text contents of a PDF page, construct a FSTextSearch object with FSTextPage

object.

• To access text such like hypertext link, construct a FSPageTextLinks object with FSTextPage

object.

• To highlight the selected text on the PDF page, construct a FSTextPage object for calculating

text area by selection.

Example:

6.2.1 How to get the text area on a page by selection

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

...

// Get the text area on a page by selection. The starting selection position and ending selection position are specified

by startPos and endPos.

-(NSArray<FSRectF*>*)getTextRectsBySelection:(FSPDFPage*)page startPos:(FSPointF*)startPos

endPos:(FSPointF*)endPos {

 if(![page isParsed])

 @throw [NSException exceptionWithName:NSGenericException reason:@"PDF Page should be parsed

first" userInfo:nil];

 // Create a text page from the parsed PDF page.

 FSTextPage* textPage = [[FSTextPage alloc] initWithPage:page flags:FSTextPageParseTextNormal];

 if(!textPage || [textPage isEmpty])

 return nil;

Foxit PDF SDK for iOS

Developer Guide

104

 int startCharIndex = [textPage getIndexAtPos:startPos.x y:startPos.y tolerance:5];

 int endCharIndex = [textPage getIndexAtPos:endPos.x y:endPos.y tolerance:5];

 // API getTextRectCount requires that start character index must be lower than or equal to end character index.

 startCharIndex = startCharIndex<endCharIndex?startCharIndex:endCharIndex;

 endCharIndex = endCharIndex>startCharIndex?endCharIndex:startCharIndex;

 int count = [textPage getTextRectCount:startCharIndex count:endCharIndex-startCharIndex];

 if(count)

 {

 NSMutableArray<FSRectF*>* array = [[NSMutableArray<FSRectF*> alloc] init];

 for(int i=0; i<count; i++) {

 FSRectF* rect = [textPage getTextRect:i];

 if(!rect || [rect isEmpty])

 continue;

 [array addObject:rect];

 }

 // The return rects are in PDF unit, if caller need to highlight the text rects on the screen, then these rects should

be converted in device unit first.

 return array;

 }

 return nil;

}

...

6.3 Text Search

Foxit PDF SDK provides APIs to search text in a PDF document, a XFA document, a text page or in a

PDF annotation's appearance. It offers functions to do a text search and get the searching result:

• To specify the searching pattern and options, use functions - [FSTextSearch setPattern:], -

[FSTextSearch setStartPage:] (only useful for a text search in PDF document), - [FSTextSearch

setEndPage:] (only useful for a text search in PDF document) and - [FSTextSearch

setSearchFlags:].

• To do the searching, use function - [FSTextSearch findNext] or - [FSTextSearch findPrev].

• To get the searching result, use function - [FSTextSearch getMatchXXX].

Example:

6.3.1 How to search a text pattern in a PDF

#import "ViewController.h"

Foxit PDF SDK for iOS

Developer Guide

105

#import <FoxitRDK/FSPDFViewControl.h>

...

NSString *pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

FSPDFDoc *doc = [[FSPDFDoc alloc] initWithPath:pdfPath];

// Create a text search handler for searching in PDF document.

FSTextSearch *textSearch = [[FSTextSearch alloc] initWithDocument:doc cancel:nil

flags:FSTextPageParseTextNormal];

// Set the start page index which searching will begin. By default, end page will be the last page.

[textSearch setStartPage:0];

// Set the text to be searched.

[textSearch setPattern:@"foxit"];

// Set the search flags to be matching case and matching whole word.

[textSearch setSearchFlags:FSTextSearchSearchMatchCase|FSTextSearchSearchMatchWholeWord];

// Start to search from the start page to end.

while([textSearch findNext]) {

 // If true, then we found a matched result.

 // Get the found page index.

 int pageIndx = [textSearch getMatchPageIndex];

 // Get the start character index of the matched text on the found page.

 int startCharIndex = [textSearch getMatchStartCharIndex];

 // Get the end character index of the matched text on the found page.

 int endCharIndex = [textSearch getMatchEndCharIndex];

 // Get the rectangular region of the matched text on the found page.

 FSRectFArray* matchRects = [textSearch getMatchRects];

 }

}

...

6.4 Bookmark (Outline)

Foxit PDF SDK provides navigational tools called Bookmarks to allow users to quickly locate and link

their point of interest within a PDF document. PDF bookmark is also called outline, and each

bookmark contains a destination or actions to describe where it links to. It is a tree-structured

hierarchy, so function - [FSPDFDoc getRootBookmark] must be called first to get the root of the whole

bookmark tree before accessing to the bookmark tree. Here, “root bookmark” is an abstract object

which can only have some child bookmarks without next sibling bookmarks and any data (includes

Foxit PDF SDK for iOS

Developer Guide

106

bookmark data, destination data and action data). It cannot be shown on the application UI since it

has no data. Therefore, a root bookmark can only call function - [FSBookmark getFirstChild].

After the root bookmark is retrieved, following functions can be called to access other bookmarks:

• To access the parent bookmark, use function - [FSBookmark getParent].

• To access the first child bookmark, use function - [FSBookmark getFirstChild].

• To access the next sibling bookmark, use function - [FSBookmark getNextSibling].

• To insert a new bookmark, use function - [FSBookmark insert:position:].

• To move a bookmark, use function - [FSBookmark moveTo:position:].

Example:

6.4.1 How to travel the bookmarks of a PDF in depth first order

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

...

- (void)DepthFistTravelBookmarkTree:(FSBookmark*)bookmark document:(FSPDFDoc*)doc {

 if(!bookmark || [bookmark isEmpty])

 return;

 [self DepthFistTravelBookmarkTree:[bookmark getFirstChild] document:doc];

 while(true) {

 // Get bookmark title.

 NSString* title = [bookmark getTitle];

 FSDestination* dest = [bookmark getDestination];

 if(dest && ![dest isEmpty])

 {

 float left,right,top,bottom;

 float zoom;

 int pageIndex = [dest getPageIndex:doc];

 // left, right, top, bottom, zoom are only meaningful with some special zoom modes.

 FSDestinationZoomMode mode = [dest getZoomMode];

 switch (mode) {

 case FSDestinationZoomXYZ:

 left = [dest getLeft];

 top = [dest getTop];

 zoom = [dest getZoomFactor];

 break;

 case FSDestinationZoomFitPage:

file:///F:/GSDK_6_2/GSDK_6.2.1/foxitpdfsdk_6_2_1_win_dotnet/doc/html/classfoxit_1_1pdf_1_1_bookmark.html%23a309b1b9fe1eaaa273ddef2f2071819b2
file:///F:/GSDK_6_2/GSDK_6.2.1/foxitpdfsdk_6_2_1_win_dotnet/doc/html/classfoxit_1_1pdf_1_1_bookmark.html%23a583fb57b5d0fd1c494b7ee28be881096

Foxit PDF SDK for iOS

Developer Guide

107

 break;

 case FSDestinationZoomFitHorz:

 top = [dest getTop];

 break;

 case FSDestinationZoomFitVert:

 left = [dest getLeft];

 break;

 case FSDestinationZoomFitRect:

 left = [dest getLeft];

 bottom = [dest getBottom];

 right = [dest getRight];

 top = [dest getTop];

 break;

 case FSDestinationZoomFitBBox:

 break;

 case FSDestinationZoomFitBHorz:

 top = [dest getTop];

 break;

 case FSDestinationZoomFitBVert:

 left = [dest getLeft];

 break;

 default:

 break;

 }

 }

 bookmark = [bookmark getNextSibling];

 if(bookmark == nil || [bookmark isEmpty])

 break;

 [self DepthFistTravelBookmarkTree:[bookmark getFirstChild] document:doc];

 }

}

6.5 Reading Bookmark

Reading bookmark is not a PDF bookmark, in other words, it is not PDF outlines. It is the bookmark

in applicable level. It is stored in the metadata (XML format) of catalog. It allows user to add or

remove a reading bookmark according to their reading preferences and navigate to one PDF page

easily by selecting one reading bookmark.

Foxit PDF SDK for iOS

Developer Guide

108

In order to retrieve the reading bookmark, function - [FSPDFDoc getReadingBookmarkCount] could be

called to count the reading bookmarks, and function - [FSPDFDoc getReadingBookmark:] could be

called to get a reading bookmark by index.

This class offers several functions to get/set properties of reading bookmarks, such as title,

destination page index and creation/modified date time.

Example:

6.5.1 How to add a custom reading bookmark and enumerate all the reading

bookmarks

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

...

// Add a new reading bookmark to pdf document, the returned bookmark stores the title and the page index.

- (FSReadingBookmark*)addReadingBookmark:(FSPDFDoc*)pdfDoc title:(NSString*)title

pageIndex:(int)pageIndex {

 int count = [pdfDoc getReadingBookmarkCount];

 return [pdfDoc insertReadingBookmark:count title:title dest_page_index:pageIndex];

}

// Enumerate all the reading bookmarks from the pdf document.

- (void)getReadingBookmark:(FSPDFDoc*) pdfDoc {

 int count = [pdfDoc getReadingBookmarkCount];

 for(int i=0; i<count; i++) {

 FSReadingBookmark* bm = [pdfDoc getReadingBookmark:i];

 if([bm isEmpty]) continue;

 // Get bookmark title.

 NSString* title = [bm getTitle];

 // Get the page index which associated with the bookmark.

 int pageIndex = [bm getPageIndex];

 // Get the creation date of the bookmark.

 FSDateTime* creationDate = [bm getDateTime:YES];

 // Get the modification date of the bookmark.

 FSDateTime* modificationDate = [bm getDateTime:NO];

 }

}

Foxit PDF SDK for iOS

Developer Guide

109

6.6 Attachment

In Foxit PDF SDK, attachments are only referred to attachments of documents rather than file

attachment annotation, which allow whole files to be encapsulated in a document, much like email

attachments. Foxit PDF SDK provides applications APIs to access attachments such as loading

attachments, getting attachments, inserting/removing attachments, and accessing properties of

attachments.

Example:

6.6.1 How to embed a specified file to a PDF document

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

...

NSString* filePath = @"/xxx/fileToBeEmbedded.xxx";

FSPDFNameTree* nameTree = [[FSPDFNameTree alloc] initWithDocument:self.fspdfdoc

type:FSPDFNameTreeEmbeddedFiles];

FSAttachments* attachments = [[FSAttachments alloc] initWithDoc:self.fspdfdoc nametree:nameTree];

FSFileSpec* fileSpec = [[FSFileSpec alloc] initWithDocument:self.fspdfdoc];

[fileSpec setFileName:[filePath lastPathComponent]];

if(![fileSpec embed:filePath])

 return;

[attachments addEmbeddedFile:[filePath lastPathComponent] file_spec:fileSpec];

...

6.6.2 How to export the embedded attachment file from a PDF and save it as a

single file

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

...

// Extract the embedded attachment file.

int count = [attachments getCount];

for(int i=0; i<count; i++) {

 NSString* key = [attachments getKey:i];

 if(key) {

 FSFileSpec* fileSpec = [attachments getEmbeddedFile:key];

Foxit PDF SDK for iOS

Developer Guide

110

 NSString* exportedFile = [@"/somewhere/" stringByAppendingString: [fileSpec getFileName]];

 if(fileSpec && ![fileSpec isEmpty]) {

 fileSpec exportToFile:exportedFile];

 }

 }

}

...

6.7 Annotation

An annotation associates an object such as note, line, and highlight with a location on a page of a

PDF document. PDF includes a wide variety of standard annotation types as listed in Foxit PDF SDK

supports most annotation types defined in PDF Reference. Foxit PDF SDK provides APIs of

annotation creation, properties access and modification, appearance setting and drawing.

Table 6-1. Among these annotation types, many of them are defined as markup annotations for they

are used primarily to mark up PDF documents. The 'Markup' column in Foxit PDF SDK supports most

annotation types defined in PDF Reference. Foxit PDF SDK provides APIs of annotation creation,

properties access and modification, appearance setting and drawing.

Table 6-1 shows whether an annotation is a markup annotation.

Foxit PDF SDK supports most annotation types defined in PDF Reference. Foxit PDF SDK provides

APIs of annotation creation, properties access and modification, appearance setting and drawing.

Table 6-1

Annotation type Description Markup
Supported

by SDK

Text(Note) Text annotation Yes Yes

Link Link Annotation No Yes

FreeText

(TypeWriter/TextBox/Callout)
Free text annotation Yes Yes

Line Line annotation Yes Yes

Square Square annotation Yes Yes

Circle Circle annotation Yes Yes

Polygon Polygon annotation Yes Yes

PolyLine PolyLine annotation Yes Yes

Highlight Highlight annotation Yes Yes

Underline Underline annotation Yes Yes

Squiggly Squiggly annotation Yes Yes

Foxit PDF SDK for iOS

Developer Guide

111

StrikeOut StrikeOut annotation Yes Yes

Stamp Stamp annotation Yes Yes

Caret Caret annotation Yes Yes

Ink(pencil) Ink annotation Yes Yes

Popup Popup annotation No Yes

File Attachment FileAttachment annotation Yes Yes

Sound Sound annotation Yes No

Movie Movie annotation No No

Widget* Widget annotation No Yes

Screen Screen annotation No Yes

PrinterMark PrinterMark annotation No No

TrapNet Trap network annotation No No

Watermark* Watermark annotation No No

3D 3D annotation No No

Redact Redact annotation Yes Yes

Note: Foxit PDF SDK supports a customized annotation type called PSI (pressure sensitive ink)

annotation that is not described in PDF reference. Usually, PSI is for handwriting features and

Foxit PDF SDK treats it as PSI annotation so that it can be handled by other PDF products.

Example:

6.7.1 How to add annotations to a PDF page

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

...

NSString *pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

FSPDFDoc *doc = [[FSPDFDoc alloc] initWithPath:pdfPath];

FSPDFPage *pdfPage = [doc getPage:0];

// Add text annot.

FSRectF *rect = [[FSRectF alloc] initWithLeft1:100 bottom1:100 right1:120 top1:120];

FSNote *note = [[FSNote alloc] initWithAnnot:[pdfPage addAnnot:FSAnnotNote rect:rect]];

if (!note || [note isEmpty]) {

 return;

}

[note setIconName:@"Comment"];

// Set color to blue.

[note setBorderColor:0xff0000ff];

Foxit PDF SDK for iOS

Developer Guide

112

[note setContent:@"This is the note comment, write any content here."];

[note resetAppearanceStream];

// The following code demonstrates how to add hightlight annotation on the searched text.

FSTextSearch *textSearch = [[FSTextSearch alloc] initWithDocument:doc cancel:nil

flags:FSTextPageParseTextNormal];

if (!textSearch || [textSearch isEmpty]) {

 return;

}

// Suppose that the text for highlighting is "foxit".

[textSearch setPattern:@"foxit"];

BOOL bMatched = [textSearch findNext];

if (bMatched) {

 FSRectFArray *rects = [textSearch getMatchRects];

 int rectCount = [rects getSize];

 // Fill the quadpoints array according to the text rects of matched result.

 FSQuadPointsArray* arrayOfQuadPoints = [[FSQuadPointsArray alloc] init];

 for (int i = 0; i < rectCount; i++) {

 FSRectF *rect = [rects getAt:i];

 FSQuadPoints *quadPoints = [[FSQuadPoints alloc] init];

 FSPointF *point = [[FSPointF alloc] init];

 [point set:[rect getLeft] y:[rect getTop]];

 [quadPoints setFirst:point];

 [point set:[rect getRight] y:[rect getTop]];

 [quadPoints setSecond:point];

 [point set:[rect getLeft] y:[rect getBottom]];

 [quadPoints setThird:point];

 [point set:[rect getRight] y:[rect getBottom]];

 [quadPoints setFourth:point];

 [arrayOfQuadPoints add:quadPoints];

 }

 // Just set an empty rect to markup annotation, the annotation rect will be calculated according to the quadpoints

that set to it later.

 FSRectF *rect = [[FSRectF alloc] initWithLeft1:0 bottom1:0 right1:0 top1:0];

 FSTextMarkup *textMarkup = [[FSTextMarkup alloc] initWithAnnot:[pdfPage addAnnot:FSAnnotHighlight

rect:rect]];

 // Set the quadpoints to this markup annot.

 [textMarkup setQuadPoints:arrayOfQuadPoints];

Foxit PDF SDK for iOS

Developer Guide

113

 // set to red.

 [textMarkup setBorderColor:0xffff0000];

 // set to thirty-percent opacity.

 [textMarkup setOpacity:0.3f];

 // Generate the appearance.

 [textMarkup resetAppearanceStream];

}

6.7.2 How to delete annotations in a PDF page

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

...

NSString *pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

FSPDFDoc *doc = [[FSPDFDoc alloc] initWithPath:pdfPath];

FSPDFPage *pdfPage = [doc getPage:0];

// Remove an annot by index.

FSAnnot* annot = [pdfPage getAnnot:0];

if(!annot || [annot isEmpty])

 return;

// Remove the first annot,so the second annot will become first.

[pdfPage removeAnnot:annot];

6.7.3 How to register listeners to receive annotation events

Annotation event listeners should always be registered in advance before receiving the annotation

events. See the following code snippet.

#import "UIExtensionsManager.h"

...

@interface RegisterLisntener : NSObject < IAnnotEventListener>

@end

@implementation RegisterLisntener

#pragma mark <IAnnotEventListener>

Foxit PDF SDK for iOS

Developer Guide

114

- (void)onAnnotAdded:(FSPDFPage *)page annot:(FSAnnot *)annot {

}

- (void)onAnnotWillDelete:(FSPDFPage *)page annot:(FSAnnot *)annot {

}

- (void)onAnnotDeleted:(FSPDFPage *)page annot:(FSAnnot *)annot {

}

- (void)onAnnotModified:(FSPDFPage *)page annot:(FSAnnot *)annot {

}

- (void)onAnnotSelected:(FSPDFPage *)page annot:(FSAnnot *)annot {

}

- (void)onAnnotDeselected:(FSPDFPage *)page annot:(FSAnnot *)annot {

}

- (void)onAnnotsAdded:(NSArray<FSAnnot *> *)annots{

}

- (void)onAnnotsWillDelete:(NSArray<FSAnnot *> *)annots{

}

- (void)registerYourAnnotEventListener:(UIExtensionsManager *)extensionsManager {

 // Call registerAnnotEventListener to register the annot event listener to receive annot events

 [extensionsManager registerAnnotEventListener:self];

}

@end

6.8 Form

Form (AcroForm) is a collection of fields for gathering information interactively from the user. Foxit

PDF SDK provides APIs to view and edit form field programmatically. Form fields are commonly used

in PDF documents to gather data. The FSForm class offers functions to retrieve form fields or form

controls, import/export form data and other features, for example:

• To retrieve form fields, please use functions - [FSForm getFieldCount:] and - [FSForm

getField:filter:].

Foxit PDF SDK for iOS

Developer Guide

115

• To retrieve form controls from a PDF page, please use functions - [FSForm getControlCount:]

and - [FSForm getControl:index:].

• To import form data from an XML file, please use function - [FSForm importFromXML:]; to

export form data to an XML file, please use function - [FSForm

exportToXML:field_array:is_include:].

• To retrieve form filler object, please use function - [FSForm getFormFiller].

To import form data from a FDF/XFDF file or export such data to a FDF/XFDF file, please refer to

functions - [FSPDFDoc importFromFDF:types:page_range:] and - [FSPDFDoc

exportToFDF:types:page_range:].

Example:

6.8.1 How to import and export form data from or to a XML file

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

...

NSString *pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

FSPDFDoc *doc = [[FSPDFDoc alloc] initWithPath:pdfPath];

// Check if the document has a form.

BOOL hasForm = [doc hasForm];

if(hasForm) {

 // Create a form object from document.

 FSForm* form = [[FSForm alloc] initWithDocument:doc];

 // Export the form data to a XML file.

 [form exportToXML:@"/somewhere/export.xml"];

 // Or import the form data from a XML file.

 [form importFromXML:@"/somewhere/export.xml"];

}

6.9 Security

Foxit PDF SDK provides a range of encryption and decryption functions to meet different level of

document security protection. Users can use regular password encryption and certificate-driven

encryption, or using their own security handler for custom security implementation.

Example:

Foxit PDF SDK for iOS

Developer Guide

116

6.9.1 How to encrypt a PDF file with password

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

...

// Encrypt the source pdf document with specified owner password and user password, the encrypted PDF will be

saved to the path specified by parameter savePath.

- (BOOL) encryptPDF:(FSPDFDoc*) pdfDoc ownerPassword:(NSString*)ownerPassword

userPassword:(NSString*)userPassword savedPath:(NSString*)savedPath

{

 if(!pdfDoc || (!ownerPassword && !userPassword) || !savedPath)

 return NO;

 // The encryption setting data. Whether to encrypt meta data: YES, User permission: modify,assemble,fill form.

Cipher algorithm: AES 128.

 FSStdEncryptData* encryptData = [[FSStdEncryptData alloc] initWithIs_encrypt_metadata:YES

user_permissions:(FSPDFDocPermModify| FSPDFDocPermAssemble|FSPDFDocPermFillForm)

cipher:FSSecurityHandlerCipherAES key_length:16];

 FSStdSecurityHandler * stdSecurity = [[FSStdSecurityHandler alloc] init];

 if(![stdSecurity initialize:encryptData user_password:userPassword owner_password:ownerPassword])

 return NO;

 [pdfDoc setSecurityHandler:stdSecurity];

 if(![pdfDoc saveAs:savedPath save_flags:FSPDFDocSaveFlagNormal])

 return NO;

 return YES;

}

6.10 Signature

PDF Signature can be used to create and sign digital signatures for PDF documents, which protects

the security of documents’ contents and avoids it to be tampered maliciously. It can let the receiver

make sure that the document is released by the signer and the contents of the document are

complete and unchanged. Foxit PDF SDK provides APIs to create digital signature, verify the validity

of signature, delete existing digital signature, get and set properties of digital signature, display

signature and customize the appearance of the signature form fields.

Note: Foxit PDF SDK provides default Signature callbacks which supports the following two types of

signature filter and subfilter:

(1) filter: Adobe.PPKLite subfilter: adbe.pkcs7.detached

Foxit PDF SDK for iOS

Developer Guide

117

(2) filter: Adobe.PPKLite subfilter: adbe.pkcs7.sha1

If you use one of the above signature filter and subfilter, you can sign a PDF document and verify the validity

of signature by default without needing to register a custom callback.

Example:

6.10.1 How to sign a PDF document and verify the signature

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

...

- (void)addNewSignatureAndSign:(FSPDFPage*)page rect:(FSRectF*)rect {

 // Add a new signature on the specified page rect.

 FSSignature* signature = [page addSignature:rect];

 // Set the appearance flags, if the specified flag is on, then the associated key will be displayed on the signature

appearance.

 [signature setAppearanceFlags:FSSignatureAPFlagLabel|FSSignatureAPFlagDN|FSSignatureAPFlagText|

 FSSignatureAPFlagLocation|FSSignatureAPFlagReason|FSSignatureAPFlagSigner];

 // Set signer.

 [signature setKeyValue:FSSignatureKeyNameSigner value:@"Foxit"];

 // Set location.

 [signature setKeyValue:FSSignatureKeyNameLocation value:@"AnyWhere"];

 // Set reason.

 [signature setKeyValue:FSSignatureKeyNameReason value:@"AnyReason"];

 // Set contact info.

 [signature setKeyValue:FSSignatureKeyNameContactInfo value:@"AnyInfo"];

 // Set domain name.

 [signature setKeyValue:FSSignatureKeyNameDN value:@"AnyDN"];

 // Set description.

 [signature setKeyValue:FSSignatureKeyNameText value:@"AnyContent"];

 // Filter "Adobe.PPKLite" is supported by default.

 [signature setFilter:@"Adobe.PPKLite"];

 // SubFilter "adbe.pkcs7.sha1" or "adbe.pkcs7.detached" are supported by default.

 [signature setSubFilter:@"adbe.pkcs7.detached"];

 // The input PKCS#12 format certificate, which contains the public and private keys.

 NSString* certPath = @"/somewhere/cert.pfx";

 // Password for that certificate.

Foxit PDF SDK for iOS

Developer Guide

118

 NSString* certPassword = @"123";

 NSString* signedPDFPath = @"/somewhere/signed.pdf";

 // Start to sign the signature, if everything goes well, the signed PDF will be saved to the path specified by

"save_path".

 FSProgressive* progress = [signature startSign:certPath cert_password:certPassword

digest_algorithm:FSSignatureDigestSHA1 save_path:signedPDFPath client_data:nil pause:nil];

 if(progress) {

 FSProgressiveState state = [progress resume];

 while(state == FSProgressiveToBeContinued)

 state = [progress resume];

 if(state != FSProgressiveFinished)

 return;

 }

 // Get the signatures from the signed PDF document, then verify them all.

 FSPDFDoc* pdfDoc = [[FSPDFDoc alloc] initWithPath:signedPDFPath];

 FSErrorCode err = [pdfDoc load:nil];

 if(err != FSErrSuccess) return;

 int count = [pdfDoc getSignatureCount];

 for(int i=0; i<count; i++) {

 FSSignature* signature = [pdfDoc getSignature:i];

 if(signature) {

 FSProgressive *progress = [signature startVerify:nil pause:nil];

 if (progress != nil) {

 FSProgressiveState state = [progress resume];

 while (FSProgressiveToBeContinued == state) {

 state = [progress resume];

 }

 if(state != FSProgressiveFinished)

 continue;

 }

 int verifiedState = [signature getState];

 if(verifiedState & FSSignatureStateVerifyValid)

 NSLog(@"Signature %d is valid.", i);

 }

 }

}

Foxit PDF SDK for iOS

Developer Guide

119

6.10.2 How to set customized time information for signature

The function setSignTime currently doesn’t allow changing data format. But we can resolve it by

passing the date string to the signature dictionary. See the following code snippet.

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

...

- (void)addNewSignatureAndSign:(FSPDFPage*)page rect:(FSRectF*)rect {

 // Add a new signature on the specified page rect.

 FSSignature* signature = [page addSignature:rect];

 // Set the appearance flags, if the specified flag is on, then the associated key will be displayed on the signature

appearance.

 [signature setAppearanceFlags:FSSignatureAPFlagLabel|FSSignatureAPFlagDN|FSSignatureAPFlagText|

 FSSignatureAPFlagLocation|FSSignatureAPFlagReason|FSSignatureAPFlagSigner

|FSSignatureAPFlagSigningTime];

 // Set signer.

 [signature setKeyValue:FSSignatureKeyNameSigner value:@"Foxit"];

 // Set location.

 [signature setKeyValue:FSSignatureKeyNameLocation value:@"AnyWhere"];

 // Set reason.

 [signature setKeyValue:FSSignatureKeyNameReason value:@"AnyReason"];

 // Set contact info.

 [signature setKeyValue:FSSignatureKeyNameContactInfo value:@"AnyInfo"];

 // Set domain name.

 [signature setKeyValue:FSSignatureKeyNameDN value:@"AnyDN"];

 // Set description.

[signature setKeyValue:FSSignatureKeyNameText value:@"AnyContent"];

 // FSDateTime *time = ...;

 // [signature setSignTime:time];

// The default format of the Signature date is yyMMddhhmmss-TimeZone.

 //Please refer to the following codes if you need to set the time of the custom format.

FSPDFDictionary* dictionary = [signature getSignatureDict];

[dictionary setAtString:@"M" value:@"2022/02/13 11:00:00"/* formatted time string*/];

 // Filter "Adobe.PPKLite" is supported by default.

 [signature setFilter:@"Adobe.PPKLite"];

 // SubFilter "adbe.pkcs7.sha1" or "adbe.pkcs7.detached" are supported by default.

 [signature setSubFilter:@"adbe.pkcs7.detached"];

 // The input PKCS#12 format certificate, which contains the public and private keys.

 NSString* certPath = @"/somewhere/cert.pfx";

Foxit PDF SDK for iOS

Developer Guide

120

 // Password for that certificate.

 NSString* certPassword = @"123";

 NSString* signedPDFPath = @"/somewhere/signed.pdf";

 // Start to sign the signature, if everything goes well, the signed PDF will be saved to the path specified by

"save_path".

 FSProgressive* progress = [signature startSign:certPath cert_password:certPassword

digest_algorithm:FSSignatureDigestSHA1 save_path:signedPDFPath client_data:nil pause:nil];

 if(progress) {

 FSProgressiveState state = [progress resume];

 while(state == FSProgressiveToBeContinued)

 state = [progress resume];

 if(state != FSProgressiveFinished)

 return;

 }

}

Foxit PDF SDK for iOS

Developer Guide

121

7 Creating a Custom Tool

With Foxit PDF SDK for iOS, creating a custom tool is a simple process. There are several tools

implemented in the UI Extensions Component already. These tools can be used as a base for

developers to build upon or use as a reference to create a new tool. In order to create your own tool

quickly, we suggest you take a look at the uiextensions project found in the "libs/uiextensions_src"

folder.

To create a new tool, the most important step is to declare a class that implements the

"IToolHandler" interface.

In this section, we will make a Regional Screenshot Tool to show how to create a custom tool with

Foxit PDF SDK for iOS. This tool can help the users who only want to select an area in a PDF page to

capture, and then save it as an image. Now, let’s do it.

7.1 Create a Regional Screenshot Tool in Objective-C

For convenience, we will build this tool based on the "viewer_ctrl_demo" project found in the

"samples" folder. Steps required for implementing this tool are as follows:

• Create a class named ScreenCaptureToolHandler that implements the "IToolHandler"

interface.

• Handle onPageViewLongPress and onDraw events.

• Instantiate a ScreenCaptureToolHandler object, and then register it to the

UIExtensionsManager.

• Set the ScreenCaptureToolHandler object as the current tool handler.

Step 1: Create a class named ScreenCaptureToolHandler that implements the "IToolHandler"

interface.

a) Load the "viewer_ctrl_demo" project in Xcode. Create a class named

"ScreenCaptureToolHandler" in the "Source" folder, and create the corresponding header

file.

b) Let the ScreenCaptureToolHandler class implement the IToolHandler interface as follows:

Foxit PDF SDK for iOS

Developer Guide

122

@interface ScreenCaptureToolHandler : NSObject<IToolHandler>

Step 2: Handle onPageViewLongPress and onDraw events.

Update ScreenCaptureToolHandler.h as follows:

#import <Foundation/Foundation.h>

#import <FoxitRDK/FSPDFViewControl.h>

#import <uiextensionsDynamic/UIExtensionsManager.h>

@protocol IToolHandler;

@class TaskServer;

@interface ScreenCaptureToolHandler : NSObject<IToolHandler>

- (instancetype)initWithUIExtensionsManager:(UIExtensionsManager*)extensionsManager

taskServer:(TaskServer*)taskServer;

@end

Update ScreenCaptureToolHandler.m as follows:

#import "ScreenCaptureToolHandler.h"

#import <ImageIO/ImageIO.h>

#import <ImageIO/CGImageDestination.h>

#import <MobileCoreServices/UTCoreTypes.h>

@interface ScreenCaptureToolHandler ()

@end

@implementation ScreenCaptureToolHandler {

 UIExtensionsManager* _extensionsManager;

 FSPDFViewCtrl* _pdfViewCtrl;

 TaskServer* _taskServer;

 CGPoint startPoint;

 CGPoint endPoint;

}

@synthesize type;

- (instancetype)initWithUIExtensionsManager:(UIExtensionsManager*)extensionsManager

taskServer:(TaskServer*)taskServer

{

 self = [super init];

 if (self) {

 _extensionsManager = extensionsManager;

 _pdfViewCtrl = extensionsManager.pdfViewCtrl;

 _taskServer = taskServer;

 }

Foxit PDF SDK for iOS

Developer Guide

123

 return self;

}

-(NSString*)getName

{

 return @" ";

}

-(BOOL)isEnabled

{

 return YES;

}

-(void)onActivate

{

}

-(void)onDeactivate

{

}

// Save the image to a specified path.

- (void)saveJPGImage:(CGImageRef)imageRef path:(NSString *)path

{

 NSURL *fileURL = [NSURL fileURLWithPath:path];

 CGImageDestinationRef dr = CGImageDestinationCreateWithURL((__bridge CFURLRef)fileURL, kUTTypeJPEG ,

1, NULL);

 CGImageDestinationAddImage(dr, imageRef, NULL);

 CGImageDestinationFinalize(dr);

 CFRelease(dr);

}

// Handle the PageView Gesture and Touch event

- (BOOL)onPageViewLongPress:(int)pageIndex recognizer:(UILongPressGestureRecognizer *)recognizer

{

 if (recognizer.state == UIGestureRecognizerStateBegan)

 {

 startPoint = [recognizer locationInView:[_pdfViewCtrl getPageView:pageIndex]];

 endPoint = startPoint;

 }

 else if (recognizer.state == UIGestureRecognizerStateChanged)

 {

 endPoint = [recognizer locationInView:[_pdfViewCtrl getPageView:pageIndex]];

 // Refresh the page view, then the onDraw event will be triggered.

 [_pdfViewCtrl refresh:pageIndex];

Foxit PDF SDK for iOS

Developer Guide

124

 }

 else if (recognizer.state == UIGestureRecognizerStateEnded || recognizer.state ==

UIGestureRecognizerStateCancelled)

 {

 // Get the size of the Rect.

 CGSize size = {fabs(endPoint.x-startPoint.x), fabs(endPoint.y-startPoint.y)};

 CGPoint origin = {startPoint.x<endPoint.x?startPoint.x:endPoint.x,

startPoint.y<endPoint.y?startPoint.y:endPoint.y};

 // Get the Rect.

 CGRect rect = {origin, size};

 int newDibWidth = rect.size.width;

 int newDibHeight = rect.size.height;

 if (newDibWidth < 1 || newDibHeight < 1)

 {

 return YES;

 }

 UIView* pageView = [_pdfViewCtrl getPageView:pageIndex];

 CGRect bound = pageView.bounds;

 // Create a bitmap with the size of the selected area.

 int imgSize = newDibWidth*newDibHeight*4;

 void* pBuff = malloc(imgSize);

 NSData* buff = [NSData dataWithBytes:pBuff length:imgSize];

 FSBitmap* fsbitmap = [[FSBitmap alloc] initWithWidth:newDibWidth height:newDibHeight

format:FSBitmapDIBArgb buffer: buff pitch:newDibWidth*4];

 [fsbitmap fillRect:0xFFFFFFFF rect:nil];

 FSRenderer* fsrenderer = [[FSRenderer alloc] initWithBitmap:fsbitmap is_rgb_order:YES];

 FSPDFPage* page = [_pdfViewCtrl.currentDoc getPage:pageIndex];

 // Calculate the display matrix.

 FSMatrix2D* fsmatrix = [page getDisplayMatrix: -rect.origin.x top:-rect.origin.y width:bound.size.width

height:bound.size.height rotate:0];

 // Set the render content, then start to render the selected area to the bitmap.

 [fsrenderer setRenderContentFlags:FSRendererRenderPage|FSRendererRenderAnnot];

 FSProgressive *progressive = [fsrenderer startRender:page matrix:fsmatrix pause:nil];

 if (progressive) {

 while (true) {

 if ([progressive resume] != FSProgressiveToBeContinued) {

 break;

 }

 }

 }

 // Convert FSBitmap to CGImage.

 CGDataProviderRef provider = CGDataProviderCreateWithData(NULL, buff.bytes, imgSize, nil);

 CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();

 CGBitmapInfo bitmapInfo = kCGBitmapByteOrderDefault|kCGImageAlphaLast;

Foxit PDF SDK for iOS

Developer Guide

125

 CGImageRef image = CGImageCreate(newDibWidth,newDibHeight, 8, 32, newDibWidth * 4,

 colorSpace, bitmapInfo,

 provider, NULL, YES, kCGRenderingIntentDefault);

 // Save the image to a specified path.

 NSString* jpgPath = @"/Users/Foxit/Desktop/ScreenCapture.jpg";

 [self saveJPGImage:image path:jpgPath];

 UIAlertView *alert = [[UIAlertView alloc]initWithTitle:@""

 message:@" The selected area was saved as a JPG stored in the

/Users/Foxit/Desktop/ScreenCapture.jpg" delegate:nil cancelButtonTitle:NSLocalizedString(@"OK", @"OK")

otherButtonTitles:nil];

 [alert show];

 return YES;

 }

 return YES;

}

// Handle the drawing event.

-(void)onDraw:(int)pageIndex inContext:(CGContextRef)context

{

 if (_extensionsManager.currentToolHandler != self) {

 return;

 }

 CGContextSetLineWidth(context, 2);

 CGContextSetLineCap(context, kCGLineCapSquare);

 UIColor *color = [UIColor redColor];

 CGContextSetStrokeColorWithColor(context, [color CGColor]);

 CGPoint points[] = {startPoint,CGPointMake(endPoint.x, startPoint.y),endPoint,CGPointMake(startPoint.x,

endPoint.y)};

 CGContextAddLines(context,points,4);

 CGContextClosePath(context);

 CGContextStrokePath(context);

}

- (BOOL)onPageViewTap:(int)pageIndex recognizer:(UITapGestureRecognizer *)recognizer

{

 return NO;

}

- (BOOL)onPageViewPan:(int)pageIndex recognizer:(UIPanGestureRecognizer *)recognizer

{

 return NO;

}

- (BOOL)onPageViewShouldBegin:(int)pageIndex recognizer:(UIGestureRecognizer *)gestureRecognizer

{

Foxit PDF SDK for iOS

Developer Guide

126

 if (_extensionsManager.currentToolHandler != self) {

 return NO;

 }

 return YES;

}

- (BOOL)onPageViewTouchesBegan:(int)pageIndex touches:(NSSet*)touches withEvent:(UIEvent*)event

{

 return NO;

}

- (BOOL)onPageViewTouchesMoved:(int)pageIndex touches:(NSSet *)touches withEvent:(UIEvent *)event

{

 return NO;

}

- (BOOL)onPageViewTouchesEnded:(int)pageIndex touches:(NSSet *)touches withEvent:(UIEvent *)event

{

 return NO;

}

- (BOOL)onPageViewTouchesCancelled:(int)pageIndex touches:(NSSet *)touches withEvent:(UIEvent *)event

{

 return NO;

}

@end

Note In the above code, you should specify an existing path to save the image. Here, the path is

"@"/Users/Foxit/Desktop/ScreenCapture.jpg"", please replace it with a valid path.

Step 3: In ViewController.m, instantiate a ScreenCaptureToolHandler object and then register it

to the UIExtensionsManager.

#import "ScreenCaptureToolHandler.h"

...

@property (nonatomic, strong) ScreenCaptureToolHandler* screenCaptureToolHandler;

...

self.screenCaptureToolHandler = [[ScreenCaptureToolHandler alloc] initWithUIExtensionsManager:

self.extensionsManager taskServer:nil];

[self.extensionsManager registerToolHandler:self.screenCaptureToolHandler];

Step 4: In ViewController.m, set the ScreenCaptureToolHandler object as the current tool

handler.

Register the Doc event listener:

Foxit PDF SDK for iOS

Developer Guide

127

@interface ViewController () <ISearchEventListener,UIExtensionsManagerDelegate, IDocEventListener>

...

[self.pdfViewCtrl registerDocEventListener:self];

Set the current tool handler in the onDocOpened function:

- (void)onDocOpened:(FSPDFDoc *)document error:(int)error {

 [self.extensionsManager setCurrentToolHandler:self.screenCaptureToolHandler];

}

Now, we have really finished creating a custom tool in Objective-C. Then, build and run the demo.

An iPhone Simulator will be used as an example to run the project. After building the demo

successfully, long press and select a rectangular area, and then a message box will be popped up as

shown in Figure 7-1. It shows where the image (selected area) was saved to.

Figure 7-1

In order to verify whether the tool captures the selected area successfully, we need to find the

screenshot. Go to "desktop", we can see the image as shown in Figure 7-2.

Foxit PDF SDK for iOS

Developer Guide

128

Figure 7-2

As you can see we have successfully created a Regional Screenshot Tool in Objective-C. This is just

an example to show how to create a custom tool with Foxit PDF SDK for iOS. You can refer to it or

our demos to develop the tools you want.

7.2 Create a Regional Screenshot Tool in Swift

For convenience, we will build this tool based on the "viewer_ctrl_demo_swift" project found in the

"samples\swift" folder. Steps required for implementing this tool are as follows:

• Create a class named ScreenCaptureToolHandler that implements the "IToolHandler"

interface.

• Handle onPageViewLongPress and onDraw events.

• Instantiate a ScreenCaptureToolHandler object, and then register it to the extensions

manager.

• Set the ScreenCaptureToolHandler object as the current tool handler.

Step 1: Create a class named ScreenCaptureToolHandler that implements the "IToolHandler"

interface.

a) Load the "viewer_ctrl_demo_swift" project in Xcode. Create a class named

"ScreenCaptureToolHandler" in the "Source" folder.

Foxit PDF SDK for iOS

Developer Guide

129

b) Let the ScreenCaptureToolHandler class implement the IToolHandler interface as follows:

 class ScreenCaptureToolHandler: NSObject, IToolHandler { }

Step 2: Handle onPageViewLongPress and onDraw events.

Update ScreenCaptureToolHandler.swift as follows:

import Foundation

import MobileCoreServices

import ImageIO

class ScreenCaptureToolHandler: NSObject, IToolHandler {

 public var type: FSAnnotType

 var extensionManager: UIExtensionsManager!

 var pdfViewCtrl: FSPDFViewCtrl!

 var startPoint = CGPoint()

 var endPoint = CGPoint()

 init(extensionsManager: UIExtensionsManager) {

 self.extensionManager = extensionsManager

 self.pdfViewCtrl = extensionsManager.pdfViewCtrl

 self.type = FSAnnotType.annotUnknownType

 super.init()

 }

 func getName() -> String {

 return " "

 }

 func isEnabled() -> Bool {

 return true

 }

 func onActivate() {

 }

 func onDeactivate() {

 }

 // Save the image to a specified path.

 func saveJPGImage(imageRef: CGImage, path: String) {

 let fileURL: CFURL = NSURL.fileURL(withPath: path) as CFURL

 let dr = CGImageDestinationCreateWithURL(fileURL, kUTTypeJPEG, 1, nil)!

 CGImageDestinationAddImage(dr, imageRef, nil)

 CGImageDestinationFinalize(dr)

 }

Foxit PDF SDK for iOS

Developer Guide

130

 // Handle the PageView Gesture and Touch event

 func onPageViewLongPress(_ pageIndex: Int32, recognizer: UILongPressGestureRecognizer) -> Bool {

 if recognizer.state == UIGestureRecognizerState.began {

 startPoint = recognizer.location(in: pdfViewCtrl.getPageView(pageIndex))

 endPoint = startPoint

 }

 else if recognizer.state == UIGestureRecognizerState.changed {

 endPoint = recognizer.location(in: pdfViewCtrl.getPageView(pageIndex))

 // Refresh the page view, then the onDraw event will be triggered.

 pdfViewCtrl.refresh(pageIndex)

 }

 else if recognizer.state == UIGestureRecognizerState.ended || recognizer.state ==

UIGestureRecognizerState.cancelled {

 // Get the size of the Rect.

 let size = CGSize(width: fabs(endPoint.x - startPoint.x), height: fabs(endPoint.y - startPoint.y))

 let origin = CGPoint(x: (startPoint.x < endPoint.x) ? startPoint.x : endPoint.x, y: (startPoint.y<endPoint.y) ?

startPoint.y : endPoint.y)

 // Get the Rect.

 let rect = CGRect(origin: origin, size: size)

 let newDibwidth = rect.size.width

 let newDibHeight = rect.size.height

 if newDibwidth < 1 || newDibHeight < 1 {

 return true

 }

 let pageView = pdfViewCtrl.getPageView(pageIndex)

 let bound = pageView.bounds

 // Create a bitmap with the size of the selected area.

 let imgSize = newDibwidth * newDibHeight * 4

 let capacity: Int = Int(newDibwidth) * Int(newDibHeight) * 4

 let buff = UnsafeMutablePointer<UInt8>.allocate(capacity: capacity)

 let pBuff = NSData.init(bytes: UnsafeRawPointer(buff), length: capacity)

 let pitch: Int = Int(newDibwidth) * 4

 guard let fsbitmap = FSBitmap.init(width: Int32(newDibwidth), height: Int32(newDibHeight),

format:FSBitmapDIBFormat.dibArgb , buffer: pBuff as Data, pitch: Int32(pitch)) else {

 return false

 }

 fsbitmap.fillRect(0xFFFFFFFF, rect: nil)

 let fsrenderer = FSRenderer.init(bitmap: fsbitmap, is_rgb_order: true)

 let page = pdfViewCtrl.currentDoc?.getPage(pageIndex)

 // Calculate the display matrix.

Foxit PDF SDK for iOS

Developer Guide

131

 let fsmatrix = page?.getDisplayMatrix(-Int32(rect.origin.x), top: -Int32(rect.origin.y), width:

Int32(bound.size.width), height: Int32(bound.size.height), rotate: FSRotation.rotation0)

 // Set the render content, then start to render the selected area to the bitmap.

 fsrenderer?.setRenderContentFlags(UInt32(UInt8(FSRendererContentFlag.renderPage.rawValue) |

UInt8(FSRendererContentFlag.renderAnnot.rawValue)))

 let progress = fsrenderer?.startRender(page, matrix: fsmatrix, pause: nil)

 if ((progress) != nil) {

 while (true) {

 if (progress?.resume() != FSProgressiveState.toBeContinued)

 {

 break

 }

 }

 }

 // Convert FSBitmap to CGImage.

 let releaseData: CGDataProviderReleaseDataCallback = {

 (info: UnsafeMutableRawPointer?, data:UnsafeRawPointer, size:Int) -> Void in

 }

 let provider: CGDataProvider = CGDataProvider.init(dataInfo: nil, data: pBuff.bytes, size: Int(imgSize),

releaseData: releaseData)!

 let colorSpace = CGColorSpaceCreateDeviceRGB()

 let bitmapInfo: CGBitmapInfo = .byteOrderMask

 let image = CGImage(width: Int(newDibwidth), height: Int(newDibHeight), bitsPerComponent: 8,

bitsPerPixel: 32, bytesPerRow: Int(newDibwidth) * 4, space: colorSpace, bitmapInfo: bitmapInfo, provider:

provider, decode: nil, shouldInterpolate: true, intent: CGColorRenderingIntent.defaultIntent)

 // Save the image to a specified path.

 let jpgPath = "/Users/Foxit/Desktop/ScreenCapture.jpg"

 self.saveJPGImage(imageRef: image!, path: jpgPath)

 let alert = UIAlertView(title: "", message: " The selected area was saved as a JPG stored in the

/Users/Foxit/Desktop/ScreenCapture.jpg", delegate: nil, cancelButtonTitle: NSLocalizedString("OK", comment:

"OK"))

 alert.show()

 return true

 }

 return true

 }

 // Handle the drawing event.

 func onDraw(_ pageIndex: Int32, in context: CGContext) {

 context.setLineWidth(CGFloat(2))

 context.setLineCap(.square)

 let color = UIColor.red

 context.setStrokeColor(color.cgColor)

 let points = [startPoint, CGPoint(x: CGFloat(endPoint.x), y: CGFloat(startPoint.y)), endPoint, CGPoint(x:

Foxit PDF SDK for iOS

Developer Guide

132

CGFloat(startPoint.x), y: CGFloat(endPoint.y))]

 context.addLines(between: points)

 context.closePath()

 context.strokePath()

 }

 func onPageViewTap(_ pageIndex: Int32, recognizer: UITapGestureRecognizer?) -> Bool {

 return false

 }

 func onPageViewPan(_ pageIndex: Int32, recognizer: UIPanGestureRecognizer) -> Bool {

 return false

 }

 func onPageViewShouldBegin(_ pageIndex: Int32, recognizer gestureRecognizer: UIGestureRecognizer) ->

Bool {

 return true

 }

 func onPageViewTouchesBegan(_ pageIndex: Int32, touches: Set<AnyHashable>, with event: UIEvent) -> Bool

{

 return false

 }

 func onPageViewTouchesMoved(_ pageIndex: Int32, touches: Set<AnyHashable>, with event: UIEvent) -> Bool

{

 return false

 }

 func onPageViewTouchesEnded(_ pageIndex: Int32, touches: Set<AnyHashable>, with event: UIEvent) -> Bool

{

 return false

 }

 func onPageViewTouchesCancelled(_ pageIndex: Int32, touches: Set<AnyHashable>, with event: UIEvent) ->

Bool {

 return false

 }

}

Note In the above code, you should specify an existing path to save the image. Here, the path is

"/Users/Foxit/Desktop/ScreenCapture.jpg", please replace it with a valid path.

Step 3: In ViewController.swift, instantiate a ScreenCaptureToolHandler object and then register

it to the UIExtensionsManager.

var screenCaptureToolHandler: ScreenCaptureToolHandler!

...

self.screenCaptureToolHandler = ScreenCaptureToolHandler.init(extensionsManager: self.extensionsManager)

Foxit PDF SDK for iOS

Developer Guide

133

self.extensionsManager.register(self.screenCaptureToolHandler)

Step 4: In ViewController.swift, set the ScreenCaptureToolHandler object as the current tool

handler.

Register the Doc event listener.

class ViewController: UIViewController, UISearchBarDelegate, ISearchEventListener, IDocEventListener

...

self.pdfViewCtrl.register(self)

Set the current tool handler in the onDocOpened function:

func onDocOpened(_ document: FSPDFDoc?, error: Int32) {

 self.extensionsManager.currentToolHandler = self.screenCaptureToolHandler

}

Now, we have really finished creating a custom tool in Swift. Then, build and run the demo. After

building the demo successfully, long press and select a rectangular area, and then a message box

will be popped up (refer to Figure 7-1). Go to "desktop", we will see the screenshot (refer to Figure

7-2).

This is just an example to show how to create a custom tool in Swift with Foxit PDF SDK for iOS. You

can refer to it or our demos to develop the tools you want.

Foxit PDF SDK for iOS

Developer Guide

134

8 Implement Foxit PDF SDK for iOS using

Cordova

When it comes to developing cross-platform mobile applications, Apache Cordova is an ideal open-

source framework. The 'cordova-plugin-foxitpdf' is one of the mobile framework plugins provided

by us to use with Foxit PDF SDK for iOS. The plugin enables you to achieve powerful PDF viewing

features using the Cordova framework. Through this plugin, you can preview any PDF file including

PDF 2.0 compliant files, XFA documents, and RMS protected documents, as well as commenting and

editing PDF documents.

For the usage of 'cordova-plugin-foxitpdf' plugin, please refer to the website

https://github.com/foxitsoftware/cordova-plugin-foxitpdf.

https://github.com/foxitsoftware/cordova-plugin-foxitpdf

Foxit PDF SDK for iOS

Developer Guide

135

9 Implement Foxit PDF SDK for iOS using React

Native

React Native is an open-source mobile development framework for building native apps using

JavaScript and React. The 'react-native-foxitpdf' is only one of the mobile framework plugins

provided by us to use with Foxit PDF SDK for iOS. It allows you to achieve powerful PDF viewing

features using the React Native framework. Through this plugin, you can preview any PDF file

including PDF 2.0 compliant files, XFA documents, and RMS protected documents, as well as

commenting and editing PDF documents.

For the usage of 'react-native-foxitpdf' plugin, please refer to the website

https://github.com/foxitsoftware/react-native-foxitpdf.

https://github.com/foxitsoftware/react-native-foxitpdf
https://github.com/foxitsoftware/react-native-foxitpdf

Foxit PDF SDK for iOS

Developer Guide

136

10 Implement Foxit PDF SDK for iOS using

Xamarin

Xamarin is a cross-platform development framework for building native apps using a shared C#

codebase. We provide separate bindings for Android and iOS ('foxit_xamarin_android' and

'foxit_xamarin_ios') for developers to seamlessly integrate powerful PDF functionality of Foxit PDF

SDK into their Xamarin apps.

For the usage of 'foxit_xamarin_ios' plugin, please refer to the website

https://github.com/foxitsoftware/xamarin-foxitpdf.

https://github.com/foxitsoftware/xamarin-foxitpdf
https://github.com/foxitsoftware/xamarin-foxitpdf

Foxit PDF SDK for iOS

Developer Guide

137

11 FAQ

11.1 Bitcode Support

What is Bitcode? Does Foxit PDF SDK for iOS support Bitcode?

Bitcode is an intermediate representation of a compiled binary. Including bitcode will allow Apple to

re-optimize your app binary in the future without the need to submit a new version of your app to

the store.

Yes. Foxit PDF SDK for iOS supports Bitcode since version 3.0.

11.2 Open a PDF document from a specified PDF file path

How do I open a PDF document from a specified PDF file path?

Foxit PDF SDK for iOS provides multiple interfaces to open a PDF document. You can open a PDF

document from a specified PDF file path, or from a memory buffer. For from a specified PDF file

path, there are two ways to do that.

The first one is that just use the openDoc interface, which includes the operations of creating a PDF

document object (initWithPath), loading the document content (load), and setting the PDF

document object to view control (setDoc). Following is the sample code:

Note: The openDoc interface is only available for opening a PDF document from a file path. If you want to

customize to load a PDF document, you can implement it in the callback function (FSFileReadCallback),

and then create a document object with a FireRead instance using initWithHandler. Next, also load the

document content using load, and set the PDF document object to view control using setDoc.

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

@interface ViewController : UIViewController

@end

@implementation ViewController

{

 FSPDFViewCtrl* pdfViewCtrl;

}

Foxit PDF SDK for iOS

Developer Guide

138

- (void)viewDidLoad {

 [super viewDidLoad];

 // Get the path of a PDF.

 NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

 // Initilize a FSPDFViewCtrl object with the size of the entire screen.

 pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

 // Open an unencrypted PDF document from a specified PDF file path.

 [pdfViewCtrl openDoc:pdfPath password:nil completion:nil];

 // Add the pdfView to the root view.

 [self.view addSubview:pdfViewCtrl];

}

@end

The second one is that use the initWithPath interface to create a PDF document object, use load

interface to load the document content, and then use setDoc to set the PDF document object to view

control. Following is the sample code:

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

@interface ViewController : UIViewController

@end

@implementation ViewController

{

 FSPDFViewCtrl* pdfViewCtrl;

}

- (void)viewDidLoad {

 [super viewDidLoad];

 // Get the path of a PDF.

 NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

 // Initialize a PDFDoc object with the path to the PDF file.

FSPDFDoc* pdfdoc = [[FSPDFDoc alloc] initWithPath: pdfPath];

 // Load the unencrypted document content.

 if(FSErrSuccess != [pdfdoc load:nil]) {

 return;

 }

 // Initilize a FSPDFViewCtrl object with the size of the entire screen.

Foxit PDF SDK for iOS

Developer Guide

139

 pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

 // Set the document to view control.

 [pdfViewCtrl setDoc:pdfdoc];

 // Add the pdfView to the root view.

 [self.view addSubview:pdfViewCtrl];

}

@end

11.3 Display a specified page when opening a PDF document

What should I do if I want to display a specified page when opening a PDF document?

To display a specified page when opening a PDF file, the interface [pdfViewCtrl gotoPage: (int)

animated: (BOOL)] should be used. Foxit PDF SDK for iOS utilizes multi-thread to improve rendering

speed, so please make sure the document has been loaded successfully before using the gotoPage

interface. There are two ways to realize the feature as follows:

The first one is that making a conditional statement in the openDoc interface to ensure that only

when the document loading is complete, then call the gotoPage. If not, the gotoPage interface will

not work, and the first page will be displayed. It is because the openDoc interface starts a new

thread to perform the operation. Following is the sample code:

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

@interface ViewController : UIViewController

@end

@implementation ViewController

{

 FSPDFViewCtrl* pdfViewCtrl;

}

- (void)viewDidLoad {

 [super viewDidLoad];

 // Get the path of a PDF.

 NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

 // Initilize a FSPDFViewCtrl object with the size of the entire screen.

 pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

Foxit PDF SDK for iOS

Developer Guide

140

 // Open an unencrypted PDF document from a specified PDF file path, and go to the third page when

completing the document loading.

 [pdfViewCtrl openDoc:pdfPath password:nil completion:^(enum FSErrorCode error){

 if(error == FSErrSuccess)

 // Display the third page.

 [pdfViewCtrl gotoPage:2 animated:NO];

 }];

 // Add the pdfView to the root view.

 [self.view addSubview:pdfViewCtrl];

}

@end

The second one is that implement the <IDocEventListener> protocol, and then call the gotoPage

interface in the onDocOpened event. Following is the sample code:

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

@interface ViewController : UIViewController <IDocEventListener>

@end

@implementation ViewController

{

 FSPDFViewCtrl* pdfViewCtrl;

}

- (void)viewDidLoad {

 [super viewDidLoad];

 // Get the path of a PDF

 NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

 // Initilize a FSPDFViewCtrl object with the size of the entire screen.

 pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

 // Register the PDF document event listener.

 [pdfViewCtrl registerDocEventListener:self];

 // Open an unencrypted PDF document from a specified PDF file path.

 [pdfViewCtrl openDoc:pdfPath password:nil completion:nil];

 // Add the pdfView to the root view.

 [self.view addSubview:pdfViewCtrl];

}

Foxit PDF SDK for iOS

Developer Guide

141

#pragma IDocEventListener

-(void)onDocOpened:(FSPDFDoc *)document error:(int)error

{

 // display the third page.

 [pdfViewCtrl gotoPage:2 animated:NO];

}

@end

11.4 License key and serial number cannot work

I have downloaded the SDK package from your website without making any changes. Why

can't the license key and serial number work?

Generally, the package uploaded to the website is supposed to work. It has been tested before it is

uploaded. So, if you find the license key and serial number cannot work, it may be caused by the

date of your device. If the device's date is earlier than the StartDate in the rdk_key.txt file found in

the "libs" folder of the download package, the "librdk.so" library will be failed to unlock. Please check

the date of your device.

11.5 Add a link annotation to a PDF file

How can I add a link annotation to a PDF file?

To add a link annotation to a PDF file, you should first call the - [FSPDFPage addAnnot:rect:] to add an

annotation to a specified page, then call + [FSAction create:action_type:] to create an action, and set

the action to the added link annotation. Following is the sample code for adding a URI link

annotation to the first page of a PDF file:

#define DOCUMENT_PATH [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask, YES) objectAtIndex:0]

...

// Get the path of a PDF

NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

// Initialize a PDFDoc object with the path to the PDF file.

FSPDFDoc *document = [[FSPDFDoc alloc] initWithPath: pdfPath];

// load the unencrypted document content.

 [document load:nil];

// Get the first page of the PDF file.

Foxit PDF SDK for iOS

Developer Guide

142

FSPDFPage *page = [document getPage:0];

// Add a link annotation to the first page.

FSRectF *rect = [[FSRectF alloc] initWithLeft1:250 bottom1:650 right1:450 top1:750];

FSLink *linkAnnot = [[FSLink alloc] initWithAnnot:[page addAnnot: FSAnnotLink rect:rect]];

// Create a URI action and set the URI.

FSURIAction *uriAction = [[FSURIAction alloc] initWithAction:[FSAction create:document

action_type:FSActionTypeURI]];

[uriAction setURI:@"https://www.foxitsoftware.com"];

// Set the action to link annotation.

[linkAnnot setAction:uriAction];

// Reset appearance stream.

 [linkAnnot resetAppearanceStream];

// Save the document that has added the link annotaiton.

[document saveAs:[DOCUMENT_PATH stringByAppendingString:@"Sample_annot.pdf"]

save_flags:FSPDFDocSaveFlagNormal];

11.6 Insert an image into a PDF file

How do I insert an image into a PDF file?

To insert an image into a PDF file, you can call - [FSPDFPage

addImageFromFilePath:position:width:height:auto_generate_content:] interface. Following is the sample

code for inserting an image into the first page of a PDF file:

Note: Before calling - [FSPDFPage addImageFromFilePath:position:width:height:auto_generate_content:]

 interface, you should get and parse the page that you want to add the image.

#define DOCUMENT_PATH [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask, YES) objectAtIndex:0]

...

// Get the path of a PDF.

NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

// Initialize a PDFDoc object with the path to the PDF file.

FSPDFDoc *document = [[FSPDFDoc alloc] initWithPath: pdfPath];

// load the unencrypted document content.

[document load:nil];

Foxit PDF SDK for iOS

Developer Guide

143

// Get the first page of the PDF file.

FSPDFPage *page = [document getPage:0];

// Parse the page.

if (![page isParsed]) {

 FSProgressive* progressive = [page startParse: FSPDFPageParsePageNormal pause:nil is_reparse:NO];

 while ([progressive resume] == FSProgressiveToBeContinued) {

 continue;

 }

}

// Get the image path.

NSString* imagePath = @"/Users/xiaole/Desktop/1.png";

// Add an image to the first page.

FSPointF* point = [[FSPointF alloc] init];

[point set:100 y:300];

[page addImageFromFilePath:imagePath position:point width:100 height:120 auto_generate_content:YES];

// Save the document that has added the link annotaiton.

[document saveAs:[DOCUMENT_PATH stringByAppendingString:@"Sample_image.pdf"]

save_flags:FSPDFDocSaveFlagNormal];

11.7 Highlight the links in PDF documents and set the highlight color

How can I set whether to highlight the links in PDF documents? And how to set the highlight

color if I want to highlight links?

By default, highlighting links in PDF documents is enabled. If you want to disable it or to set the

highlight color, you can do it in the configuration JSON file (only support for version 6.3 or higher) or

by calling the APIs.

Note: If you want to set the highlight color, please make sure the highlighting links feature is enabled.

Through JSON file

Set ""highlightLink": false," to disable highlighting the links in PDF document.

Set ""highlightLinkColor": "#16007000"," to set the highlight color (input the color value as you wish).

Through calling API

Foxit PDF SDK for iOS

Developer Guide

144

UIExtensionsManager.enableHighlightLinks property is provided to set whether to enable

highlighting the links in PDF documents. If you do not want to highlight links, please set the

parameter to "false" as follows:

// Assume you have already Initialized a UIExtensionsManager object

extensionsManager.enableHighlightLinks = false;

UIExtensionsManager.linksHighlightColor property is used to set the highlight color. Following is

a sample for setting this property:

// Assume you have already Initialized a UIExtensionsManager object

extensionsManager.linksHighlightColor = [UIColor colorWithRed:0 green:0 blue:1 alpha:0.3];

11.8 Highlight the form fields in PDF form files and set the highlight

color

How can I set whether to highlight the form fields in PDF form files? And how to set the

highlight color if I want to highlight form fields?

By default, highlighting form fields in PDF documents is enabled. If you want to set the highlight

color, please make sure you have not disabled the highlighting form fields feature.

From version 6.3, you can disable/enable highlighting form fields or set the highlight color easily in

the configuration JSON file, just set the following two items:

"highlightForm": true,

"highlightFormColor": "#200033cc",

For the version before 6.3, if you want to disable/enable highlighting form fields or set the highlight

color, you should modify the source code of the UI Extensions Component using - [FSFiller

highlightFormFields:] and - [FSFiller setHighlightColor:] interfaces.

- [FSFiller highlightFormFields:] interface is provided to set whether to enable highlighting the form

fields in PDF form files. Please refer to section 4.3 "Customize UI implementation through source

code" to add the "uiextensions" project found in the "libs/uiextensions_src" folder to your project.

Then, find the onDocOpened function in "UIExtensions/Form/FormAnnotHandler.m", and set the

parameter of - [FSFiller highlightFormFields:] to "false" as follows:

- (void)onDocOpened:(FSPDFDoc*)document error:(int)error

{

 ...

 ...

 [_formFiller highlightFormFields:false];

Foxit PDF SDK for iOS

Developer Guide

145

}

- [FSFiller setHighlightColor:] interface is used to set the highlight color. Following is a sample for

calling this API:

- (void)onDocOpened:(FSPDFDoc*)document error:(int)error

{

 ...

 ...

 [_formFiller highlightFormFields:ture];

 [_formFiller setHighlightColor:0x4b00ff00];

}

11.9 Indexed Full Text Search support

Does Foxit PDF SDK support Indexed Full Text Search? If yes, how can I use it to search

through PDF files stored offline on my mobile device?

Yes. Foxit PDF SDK for iOS supports Indexed Full Text Search.

To use this feature, follows the steps below:

a) Get document source information. Create a document source based on a directory which will be

used as the search directory.

-(id)initWithDirectory: (NSString *)directory;

b) Create a full text search object, and set a path of database to store the indexed data.

-(id)init;

-(void)setDataBasePath:(NSString *)path_of_data_base;

c) Start to index the PDF documents which receive from the source.

-(FSProgressive*)startUpdateIndex: (FSDocumentsSource*)source pause: (id<FSPauseCallback>)pause

reUpdate:(BOOL)reUpdate;

Note: You can index a specified PDF file. For example, if the contents of a PDF file have been changed,

you can re-index it using the following API:

-(BOOL)updateIndexWithFilePath: (NSString *)file_path;

d) Search the specified keyword from the indexed data source. The search results will be returned

to external by a specified callback function when a matched one is found.

Foxit PDF SDK for iOS

Developer Guide

146

-(BOOL)searchOf: (NSString *)match_string rank_mode:(FSFullTextSearchRankMode)rank_mode callback:

(id<FSSearchCallback>)Callback;

Following is a sample for how to use it:

- (void)FullTextSearch {

 NSString *directory = @"INPUT_DIRECTORY";

 FSDocumentsSource* docs = [[FSDocumentsSource alloc] initWithDirectory:directory];

 FSFullTextSearch* fulltextSearch = [FSFullTextSearch init];

NSString* dbPath = @"The path of data base to store the indexed data...";

[fulltextSearch setDataBasePath:dbPath];

FSProgressive* progressive = [fulltextSearch startUpdateIndex:docs pause:nil reUpdate:NO];

 if (progressive) {

 while (true) {

 if ([progressive resume] != FSProgressiveToBeContinued) {

 break;

 }

 }

 }

 [fulltextSearch searchOf:@"Foxit" RankMode:FSFullTextSearchRankNone callback:[[FSSearchCallbackImp

alloc] init]];

}

@end

A sample callback function is as follows:

@interface FSSearchCallbackImp: NSObject<FSSearchCallback>

@end

@implementation FSSearchCallbackImp

-(int)retrieveSearchResult:(NSString*)file_path page_index:(int)page_index

match_result:(NSString*)match_result match_start_text_index:(int)match_start_text_index

match_end_text_index:(int)match_end_text_index

{

 NSLog (@"file_path: %@\n", file_path);

 NSLog (@"page_index: %i， match_start_text_index: %i, match_end_text_index: %i\n", page_index,

match_start_text_index, match_end_text_index);

 NSLog (@"match_result: %@\n\n", match_result);

 return 0;

}

@end

Foxit PDF SDK for iOS

Developer Guide

147

Note:

• The indexed full text search provided by Foxit PDF SDK for iOS will go through a directory

recursively, so that both the files and the folders under the search directory will be indexed.

• If you want to abort the index process, you can pass in a pause callback parameter to the

startUpdateIndex interface. The callback function NeedPauseNow will be invoked once a

PDF document is indexed, so that the caller can abort the index process when the callback

NeedPauseNow return "true".

• The location of the indexed database is set by setDataBasePath interface. If you want to

clear the indexed database, you shoud do it manually. And now, removing a file from index

function is not supported.

• Every search result of the searchOf interface is returned to external by a specified callback.

Once the searchOf interface returns "true" or "false", it means the searching is finished.

11.10 Print PDF document

Does Foxit PDF SDK for iOS support to print a PDF document? If yes, how can I use it?

Yes. Foxit PDF SDK for iOS supports the print feature from version 5.1. You can press the Wireless

Print button on the More Menu view in the Complete PDF viewer demo to print the PDF document.

Furthermore, you can call the following two APIs to print the PDF documents:

// for iPhone and iTouch

(void)printDoc:(FSPDFDoc *)doc animated:(BOOL)animated jobName:(nullable NSString *)jobName

delegate:(nullable id<UIPrintInteractionControllerDelegate>)delegate completionHandler:(nullable

UIPrintInteractionCompletionHandler)completion;

// for iPad

(void)printDoc:(FSPDFDoc *)doc fromRect:(CGRect)rect inView:(UIView *)view animated:(BOOL)animated

jobName:(nullable NSString *)jobName delegate:(nullable id<UIPrintInteractionControllerDelegate>)delegate

completionHandler:(nullable UIPrintInteractionCompletionHandler)completion;

Following is a sample for how to use it:

UIPrintInteractionCompletionHandler completion = ^(UIPrintInteractionController *_Nonnull

printInteractionController, BOOL completed, NSError *_Nullable error) {

 if (error) {

 UIAlertAction* action = [UIAlertAction actionWithTitle:[@"Warning:"

stringByAppendingString:error.localizedDescription] style:UIAlertActionStyleDefault handler:nil];

Foxit PDF SDK for iOS

Developer Guide

148

 UIAlertController* controller = [[UIAlertController alloc] init];

 [controller addAction:action];

 [self showViewController:controller sender:nil];

 }

};

NSString *fileName = @"xxx.pdf";

FSPDFDoc* doc = [[FSPDFDoc alloc] initWithPath:fileName];

[UIExtensionsManager printDoc: doc animated:YES jobName:fileName delegate:nil

completionHandler:completion];

11.11 Night mode color settings

How can I set the night mode color?

if you want to set the night mode color, please first set the properties

FSPDFViewCtrl.mappingModeBackgroundColor and FSPDFViewCtrl.mappingModeForegroundColor,

and then set the FSPDFViewCtrl.colorMode to FSRendererColorModeMapping.

Note: If the FSPDFViewCtrl.colorMode has already been set to FSRendererColorModeMapping, you still

need to set it again after updating the FSPDFViewCtrl.mappingModeBackgroundColor and

FSPDFViewCtrl.mappingModeForegroundColor. Otherwise, the settings may not work.

The properties should be changed in the source code of the UI Extensions Component, please refer

to section 5.3 "Customize UI implementation through source code" to add the "uiextensions" project

found in the "libs/uiextensions_src" folder to your project. Then, find the settingBar function in

"UIExtensions/UIExtensionsManager.m", and set the color as you like.

Following is a sample to set the night mode color:

- (void)settingBar:(FSSettingBar *)settingBar isNightMode:(BOOL)isNightMode {

 self.settingBar.viewSettingManager.isDayOrNightForLast = YES;

 if ([self.pdfViewCtrl getPageLayoutMode] == PDF_LAYOUT_MODE_REFLOW) {

 UIColor* color = isNightMode ? UIColor.blackColor : UIColor.whiteColor;

 [self.pdfViewCtrl setReflowBackgroundColor:color];

 [self.pdfViewCtrl setPageLayoutMode:PDF_LAYOUT_MODE_REFLOW];

 self.pdfViewCtrl.isNightMode = isNightMode;

 }else{

 if (!(self.pdfViewCtrl.isNightMode == isNightMode && self.pdfViewCtrl.colorMode !=

FSRendererColorModeMappingGray)) {

Foxit PDF SDK for iOS

Developer Guide

149

 self.pdfViewCtrl.isNightMode = isNightMode;

 if (self.pdfViewCtrl.nightColorMode == FSNightColorModeMappingGray && isNightMode) {

 self.pdfViewCtrl.colorMode = FSRendererColorModeMappingGray;

 }

 if (isNightMode && self.pdfViewCtrl.nightColorMode != FSNightColorModeMappingGray)

 {

 // Set background color.

 self.pdfViewCtrl.mappingModeBackgroundColor = [UIColor redColor];

 // Set foreground color.

 self.pdfViewCtrl.mappingModeForegroundColor = [UIColor greenColor];

 // Set color mode.

 self.pdfViewCtrl.colorMode = FSRendererColorModeMapping;

 // Set the background color for the areas that are out of the pdfviewctrl.

 self.pdfViewCtrl.backgroundColor = [UIColor colorWithRed:20.0/255.0 green:20.0/255.0

blue:20.0/255.0 alpha:1.0];

 }

 else {

 self.pdfViewCtrl.colorMode = FSRendererColorModeNormal;

 self.pdfViewCtrl.backgroundColor = [UIColor colorWithRed:230.0/255.0 green:230.0/255.0

blue:230.0/255.0 alpha:1.0];

 }

 }

 }

}

11.12 Upload Foxit SDK Framework to Apple App Store

Why do I meet "Invalid Binary Architecture" warning and "Code signing

"FoxitRDK.framework" failed" error when I uploaded my app embedded your SDK Framework

to Apple App Store?

Foxit SDK Framwork includes arm64, armv7, i386, and x86_64 architectures, but the i386, and

x86_64 architectures are not allowed to be uploaded to Apple App Store so that you will meet the

"Invalid Binary Architecture" warning and "Code signing "FoxitRDK.framework" failed" error if you

use the framework directly.

To solve this problem, Foxit SDK provides a script named "prepare-framework-to-publish-to-

appstore.sh" found in the "libs" folder to strip the arm architectures, and then output the library to

Foxit PDF SDK for iOS

Developer Guide

150

the directory "./device/FoxitRDK.framework". You should use this library in your project and then

you can publish your app to Apple App Store.

11.13 Output exception/crash log information

How can I output exception/crash log information when my app throws exceptions or

crashes?

If you want to output exception/crash log information, all you need is to implement the

<IExceptionLogger> protocol, and then call the interface + [FSPDFViewCtrl setExceptionLogger:].

11.14 Localization settings

How to change Localization settings with Foxit PDF SDK for iOS?

By default, Foxit PDF SDK for iOS will automatically switch the UI language according to the current

language of your system, provided that the language is supported by Foxit PDF SDK for iOS.

Currently, Foxit PDF SDK for iOS supports the following languages: English, Korean, and Chinese

(Simplified, Traditional). Those language resource files are located in the

"libs\uiextensions_src\UIExtensions\Resource\FoxitLocalizable" folder.

If you want to use your own localization language that is not supported by Foxit PDF SDK for iOS:

• For version 6.4, you can refer to the article

https://developers.foxitsoftware.com/kb/article/change-localization-settings-pdf-sdk-ios/ to

change the localization settings, which needs to modify the localization settings in the

UIExtensions Component.

From version 7.0 or higher, you can do it directly in your project. First, add a language to your

project, and translate all the entries to the language you wish. Then, call + [FSLocalization

addLanguage:table:languageAbbr:] to add the new created language that you want to support. Last, to

make it work, you can change your current system language, or call + [FSLocalization

setCurrentLanguage:FSLocalizationLanguageOptionalEnglish] to set current language.

11.15 Update page binding to support Right-to-Left

How can I automatically update page binding to support Right-to-Left?

https://developers.foxitsoftware.com/kb/article/change-localization-settings-pdf-sdk-ios/

Foxit PDF SDK for iOS

Developer Guide

151

For most languages, the reading habits we use are left-to-right, which calls for a page binding on the

left edge. However, there are also some languages that read from right to left, such as Arabic and

Hebrew and several East Asian scripts. In this case, binding on the right edge is preferable for users,

which the pages will be arranged from right to left (the first page is on the top right). To do this, we

made the adaptation of the right-to-left page layout.

The page binding is used with horizontal scrolling. For vertical scrolling, it has effect only when

double-page mode is enabled.

Updating the Page Binding Programmatically

Foxit PDF SDK for iOS defines an enumeration in the FSPDFViewCtrl class to infer how a document

should be presented to the user. The possible values are:

• PDF_PAGE_BINDING_LEFT_EDGE: the document flows from left to right

• PDF_PAGE_BINDING_RIGHT_EDGE: the document flows from right to left

• PDF_PAGE_BINDING_UNKNOWN: the document doesn’t explicitly define a page binding, so

the behavior may be the same as it is with PDF_PAGE_BINDING_LEFT_EDGE

 /**

 * @brief Enumeration for page binding edge.

 *

 * @details Values of this enumeration should be used alone.

 */

typedef enum {

 /** The document doesn’t explicitly define a page binding, so the behavior is the same as it is with

LEFT_EDGE or RIGHT_EDGE.*/

 PDF_PAGE_BINDING_UNKNOWN = 0,

 /** The document flows from left to right.*/

 PDF_PAGE_BINDING_LEFT_EDGE = 1,

 /** The document flows from right to left.*/

 PDF_PAGE_BINDING_RIGHT_EDGE = 2,

} PDF_PAGE_BINDING_EDGE;

Then, call the following function to update the page binding to swith the page layout:

[pdfViewerCtrl setPageBindingEdge:PDF_PAGE_BINDING_RIGHT_EDGE];

The UI result after using this function:

In horizontal scrolling: (LTR: left-to-right; RTL: right-to-left)

Foxit PDF SDK for iOS

Developer Guide

152

 LTR RTL

In vertical scrolling: (has effect in double-page mode (Facing/Coving)):

 LTR RTL

Updating the Page Binding via the UI

Foxit PDF SDK for iOS

Developer Guide

153

You can create a demo using uiextensionsDynamic.framework or use complete_pdf_viewer

demo directly to update the page binding. After running the demo, find the View settings bar, you

can enable or disable the Right to Letf as below:

11.16 Issue with opening web PDFs

How can I resolve the issue that some documents may not display correctly or cannot be

displayed at all when opening web PDFs using - [FSPDFViewCtrl openDocFromURL:password:

cacheOption: httpRequestProperties: completion:] interface?

The issue occurs when some documents with numerous objects are closed before they finish

loading, resulting in an incomplete caching process. When attempting to load the data, there is no

current method to determine the data's validity, only whether it has been cached.

To resolve this issue, it is recommended for users to clear cache data and reload the document

using the following method. This approach should not impact document opening speed, as the SDK

internally loads web pages based on page numbers.

/**

 * @brief Clear the cache file.

 * @param url It should be a remote path.

 *

 */

-(void)clearCacheFile:(NSString *)url;

/**

 * @brief Clear all files cached by SDK.

Foxit PDF SDK for iOS

Developer Guide

154

 */

-(void)clearAllCacheFile;

11.17 Implement UIScrollViewDelegate events

How can I implement the events of UIScrollViewDelegate?

If you want to implement some UIScrollViewDelegate events, you can refer to our

IScrollViewEventListener interface. You can use this interface to do some things, such as

monitoring the states for "canceling page turn" and "zooming" when swiping to turn page and

zooming in/out PDF page.

For example, to monitor the "canceling page turn" state, you can refer to the following code:

• First, register a callback as follows:

[self.pdfViewControl registerDocEventListener:self];

• Then, by making judgments, you can monitor whether the page turn is canceled:

@property (nonatomic, assign) int turnPageIndex;

@property (nonatomic, strong) UIViewController *scrollView;

…

- (void)onScrollViewWillBeginDragging:(UIScrollView *)scrollView{

 if (scrollView == [self.pdfViewControl getPageContainer]){

 self.turnPageIndex = [self.pdfViewControl getCurrentPage];

 NSLog(@"Will turn page %d",self.turnPageIndex);

 }

}

- (void)onScrollViewDidEndDecelerating:(UIScrollView *)scrollView{

 if (scrollView == [self.pdfViewControl getPageContainer]){

 int pageIndex = [self.pdfViewControl getCurrentPage];

 if (self.turnPageIndex == pageIndex){

 NSLog(@"Cancel page turn %d",self.turnPageIndex);

 }

 }

}

Foxit PDF SDK for iOS

Developer Guide

155

11.18 Improve efficiency in inserting and rendering watermarks

How can I improve efficiency in inserting and rendering watermarks?

Some customers encounter issues such as delays and incomplete watermark display, when adding a

custom watermark to their product. In this case, you can refer to the following method:

// Once a watermark is created, it can be reused multiple times, preventing the necessity for repeated creations

and circumventing any efficiency problems.

if (!self.watermark) {

 FSWatermarkSettings *settings = [[FSWatermarkSettings alloc] initWithPosition:FSPosCenter offset_x:0

offset_y:0 flags:0 scale_x:1 scale_y:1 rotation:FSPosTopCenter opacity:1];

 settings.flags = FSWatermarkSettingsFlagOnTop;

 FSWatermarkTextProperties *textProperties = [[FSWatermarkTextProperties alloc] initWithFont:[[FSFont

alloc] initWithFont_id:FSFontStdIDTimesB] font_size:30.f color:0xA4A4A4

style:FSWatermarkTextPropertiesFontStyleNormal line_space:1 alignment:FSAlignmentCenter];

 self.watermark = [[FSWatermark alloc] initWithDocument:[self.pdfViewControl getDoc] text:@"我是水印"

properties:textProperties settings:settings];

 }

FSPDFPage *page = [[self.pdfViewControl getDoc] getPage:index];

if (!page.isParsed) {

 [page startParse];

}

// Determine whether the watermark has been loaded on the current page to avoid loading duplicate

watermarks

if (!page.hasWatermark) {

 [self.watermark insertToPage:page];

 [self.pdfViewControl refresh:index];

}

11.19 Enable ink (handwriting) recognition

How can I enable ink (handwriting) recognition?

By default, the ink recognition feature is disable. From version 9.1, If you want to enable ink

recognition, you can just set the following item in the configuration JSON file:

 "uiSettings": {

 …

 "enableHandwritingRecognition" : true,

 …

}

Foxit PDF SDK for iOS

Developer Guide

156

12 Technical Support

Foxit Support

In order to provide you with a more personalized support for a resolution, please log in to your Foxit

account and submit a ticket so that we can collect details about your issue. We will work to get your

problem solved as quickly as we can once your ticket is routed to our support team.

You can also check out our Support Center, choose Foxit PDF SDK which also has a lot of helpful

articles that may help with solving your issue.

Phone Support

Phone: 1-866-MYFOXIT or 1-866-693-6948

https://account.foxit.com/cas/login?service=https%3A%2F%2Fwww.foxit.com%2Fsupport%2Fticket.html%3F_ga%3D2.256387019.1360406299.1628848086-542337066.1628848086%26sign-from%3Dmember%26an3DFoxitOffice
https://account.foxit.com/cas/login?service=https%3A%2F%2Fwww.foxit.com%2Fsupport%2Fticket.html%3F_ga%3D2.256387019.1360406299.1628848086-542337066.1628848086%26sign-from%3Dmember%26an3DFoxitOffice
https://kb.foxitsoftware.com/hc

	1 Introduction to Foxit PDF SDK
	1.1 Foxit PDF SDK
	1.2 Foxit PDF SDK for iOS
	1.2.1 Why Foxit PDF SDK for iOS is your choice
	1.2.2 Main Frame of Foxit PDF SDK for iOS
	1.2.3 UI Extensions Component Overview
	1.2.4 Key Features of Foxit PDF SDK for iOS

	1.3 Evaluation
	1.4 License
	1.5 About this Guide

	2 Getting Started
	2.1 Requirements
	2.2 What is in the Package
	2.2.1 The package without Mac Catalyst
	2.2.2 The package with Mac Catalyst

	2.3 How to run a demo
	2.3.1 Function demo
	2.3.2 Viewer control demo
	2.3.3 Complete PDF viewer demo
	2.3.3.1 Complete PDF Viewer demo without Mac Catalyst
	2.3.3.2 Complete PDF Viewer demo with Mac Catalyst

	3 Rapidly building a full-featured PDF Reader
	3.1 Make an iOS app in Objective-C with Foxit PDF SDK for iOS
	3.1.1 Create a new iOS project in Objective-C
	3.1.2 Integrate Foxit PDF SDK for iOS into your apps
	3.1.3 Initialize Foxit PDF SDK for iOS
	3.1.4 Display a PDF document using FSPDFViewCtrl
	3.1.5 Build a full-featured PDF Reader with UI Extensions Component
	3.1.6 Add the scanning feature based on the full-featured PDF Reader

	3.2 Make an iOS app in Swift with Foxit PDF SDK for iOS
	3.2.1 Create a new iOS project in Swift
	3.2.2 Integrate Foxit PDF SDK for iOS into your apps
	3.2.3 Initialize Foxit PDF SDK for iOS
	3.2.4 Display a PDF document using FSPDFViewCtrl
	3.2.5 Build a full-featured PDF Reader with UI Extensions Component
	3.2.6 Add the scanning feature based on the full-featured PDF Reader

	4 Rapidly building a full-featured PDF Reader using Mac Catalyst
	4.1.1 Create a Mac app built with Mac Catalyst
	4.1.2 Integrate Foxit PDF SDK for iOS (Catalyst) into your apps
	4.1.3 Initialize Foxit PDF SDK for iOS (Catalyst)
	4.1.4 Display a PDF document using FSPDFViewCtrl
	4.1.5 Build a full-featured PDF Reader with UI Extensions Component

	5 Customizing User Interface
	5.1 Customize the UI through a configuration file
	5.1.1 Introduction to JSON file
	5.1.2 Configuration Items Description
	5.1.3 Instantiate a UIExtensionsManager object with the configuration file
	5.1.4 Examples for customizing UI through a configuration file

	5.2 Customize UI elements through APIs
	5.2.1 Customize to hide top/bottom toolbar
	5.2.2 Customize to hide a specific Panel
	5.2.3 Customize to hide the UI elements in the View setting bar
	5.2.4 Customize to hide the UI elements in the More Menu view

	5.3 Customize UI implementation through source code

	6 Working with SDK API
	6.1 Render
	6.1.1 How to render a specified page to a bitmap
	6.1.2 How to render a specified page to a platform device context

	6.2 Text Page
	6.2.1 How to get the text area on a page by selection

	6.3 Text Search
	6.3.1 How to search a text pattern in a PDF

	6.4 Bookmark (Outline)
	6.4.1 How to travel the bookmarks of a PDF in depth first order

	6.5 Reading Bookmark
	6.5.1 How to add a custom reading bookmark and enumerate all the reading bookmarks

	6.6 Attachment
	6.6.1 How to embed a specified file to a PDF document
	6.6.2 How to export the embedded attachment file from a PDF and save it as a single file

	6.7 Annotation
	6.7.1 How to add annotations to a PDF page
	6.7.2 How to delete annotations in a PDF page
	6.7.3 How to register listeners to receive annotation events

	6.8 Form
	6.8.1 How to import and export form data from or to a XML file

	6.9 Security
	6.9.1 How to encrypt a PDF file with password

	6.10 Signature
	6.10.1 How to sign a PDF document and verify the signature
	6.10.2 How to set customized time information for signature

	7 Creating a Custom Tool
	7.1 Create a Regional Screenshot Tool in Objective-C
	7.2 Create a Regional Screenshot Tool in Swift

	8 Implement Foxit PDF SDK for iOS using Cordova
	9 Implement Foxit PDF SDK for iOS using React Native
	10 Implement Foxit PDF SDK for iOS using Xamarin
	11 FAQ
	11.1 Bitcode Support
	11.2 Open a PDF document from a specified PDF file path
	11.3 Display a specified page when opening a PDF document
	11.4 License key and serial number cannot work
	11.5 Add a link annotation to a PDF file
	11.6 Insert an image into a PDF file
	11.7 Highlight the links in PDF documents and set the highlight color
	11.8 Highlight the form fields in PDF form files and set the highlight color
	11.9 Indexed Full Text Search support
	11.10 Print PDF document
	11.11 Night mode color settings
	11.12 Upload Foxit SDK Framework to Apple App Store
	11.13 Output exception/crash log information
	11.14 Localization settings
	11.15 Update page binding to support Right-to-Left
	11.16 Issue with opening web PDFs
	11.17 Implement UIScrollViewDelegate events
	11.18 Improve efficiency in inserting and rendering watermarks
	11.19 Enable ink (handwriting) recognition

	12 Technical Support

