FO"H PDF SDK

DEVELOPER
GUIDE

FOXIT PDF SDK

ForiOS

TABLE OF CONTENTS

Introduction to FOXit PDF SDK.......ccouiiiiiiiniiiietineniieniietinneeineecseeseseesssesssssesesssessssssssssese 1
1.1 FOXIT PDF SDK...oiiiiiiiiiiiiiiiiicittcnint ettt b s bbb e 1
1.2 FOXit PDF SDK fOr fOS ...ttt ettt ettt s 1
1.2.1 Why Foxit PDF SDK fOr iOS iS YOUI ChOICEcctrueveeiirieieiitririeietririeieetesieee e 1
1.2.2 Main Frame of Foxit PDF SDK fOr 10Sccoviiinniiincciinicciineett e 2
1.2.3 Ul Extensions COMPONENT OVEIVIEWeccuireerrieiiirienieeieseesreessesieesreesseseesseessesseesseessesseesseesseseens 4
1.24 Key Features of FOXit PDF SDK fOr iOS.....cccoivrireirieenieriniineeiesieesieesieseeseseese e e seesessesessenessens 6
1.3 EVAIUGTION .ttt ettt 8
1.4 LICEINISE ettt a e r e n et re e 8
1.5 ADOUL thiS GUIAEvciiiiiciii bbb 9
LCT =T ¥) - T = o 10
2.1 REQUITEIMIENTS. ..ottt sttt ettt et s b e s b e et etesbe s bt e e et e sbesneensesbesresneensensens 10
2.2 WHhat iS iN The PACKAZEc.oouiriiieieieee ettt sttt 10
2.2.1 The package Without Mac CatalySt......ccoiveireireirierrene ettt 10
2.2.2 The package With Mac CatalySt......ccouviriririininininieenesesesese ettt sbe e sbesaees 13
2.3 HOW TO FUN @ AEMIO ..ottt ettt 13
2.31 FUNCLION ABIMO ...ttt sttt ne s 14
23.2 Viewer CONIOl AeMO0.......iiiiiiic e 16
233 Complete PDF VIEWET HBIMO ...ccuiviiirieiirieieieteieseeicsietetet et sttt sttt ettt sbe b e e b saenesaens 18
Rapidly building a full-featured PDF Reader.........c.cccoeverineiiisernssenineeinnennneessseesssaesssseessnne 23
3.1 Make an iOS app in Objective-C with Foxit PDF SDK for iOS.......cccoovvirieiiiicieiiicins 23
3.1.1 Create a Nnew iOS project in ObJECIVE-C....ocviriririririnenesenesese s se s sesseens 23
3.1.2 Integrate Foxit PDF SDK for iOS iNtO YOUT @PPS «.cveeiveriereriririereiierierereesesseseesessesesesessesesesessenes 26

3.1.3 INitialize FOXIt PDF SDK FOr iOS ..ottt ettt st e ebe e sbeesaseesbasebessabeesanees 28

3.1.4 Display a PDF document Using FSPDFVIEWCEI|....c.ccciveireierieieineeerecsieesieseeeseee e 29

3.1.5 Build a full-featured PDF Reader with Ul Extensions COmMpPoNentcccceevveerieerveereneenenss 32
3.1.6 Add the scanning feature based on the full-featured PDF Readercccccveerecerenereneenenne. 34

3.2 Make an iOS app in Swift with Foxit PDF SDK fOr iOS......ccviiiiiininereenereneeeeeseeeeae 37
3.2.1 Create @ NeW iOS Project iN SWIfL ...ttt be e s sane 38
3.2.2 Integrate Foxit PDF SDK fOr iOS iNtO YOUF @PPS ..c.evveerieiriererienieerieesieesseesseseesessesessesessensesenes 38
3.23 Initialize FOXit PDF SDK fOF 10S ..ottt ettt s be s 38
3.24 Display a PDF document using FSPDFVIEWCEI......cccvverirerininininenescsesesesese e 39
3.25 Build a full-featured PDF Reader with Ul Extensions COmponentc.cccceeveeneeeneerienennene 41
3.2.6 Add the scanning feature based on the full-featured PDF Readerccococvecvrererererereeennes 44

4 Rapidly building a full-featured PDF Reader using Mac Catalystcccceeecververrnerrccrcnnereanee 48
4.1.1 Create a Mac app built with Mac CatalyStcccveereirirninieireerieeeereeieneee e 48
4.1.2 Integrate Foxit PDF SDK for iOS (Catalyst) int0 YOUI @PPS .ccveveerieerueerieesieseeeseeessesesseseesenes 48
4.1.3 Initialize Foxit PDF SDK fOr i0S (Catalyst) ..c.cceerieirieiirieirieenieieieseeesieesie et 51
41.4 Display a PDF document using FSPDFVIEWCEI......covvirireninininenesenesesesesese e 51
41.5 Build a full-featured PDF Reader with Ul Extensions COmponentc.cccceeveeeneeenieereenennenes 52

5 Customizing USer INEEITACEccoeeiiiiiiiiitircittinnet et es st ssass s sass s sessansssssssanssses 55
5.1 Customize the Ul through a configuration file ... 55
5.1.1 INTrOdUCEION TO JSON fil@.uuiitiiiriiiiiecetccte ettt rre et e e be e ebeesabeesbaeenbeeenbeeennees 55
5.1.2 Configuration 1teMS DESCIIPLION ..c.cvueiiiiirterteeree ettt sttt besaeae s 61
51.3 Instantiate a UIExtensionsManager object with the configuration file........ccccocevvevcvnierennenne. 71
5.1.4 Examples for customizing Ul through a configuration file..........coecvevnecninnncinerene 72

5.2 Customize Ul elements throUgh APIS ..ottt 74
5.2.1 Customize to hide top/bottom tOOIDATccveivieireirec e 75
5.2.2 Customize to hide @ SPeCific Panel ... 83

5.2.3 Customize to hide the Ul elements in the View setting bar.........cccoeveeneveneineneenecnieenns 86

5.2.4 Customize to hide the Ul elements in the More Menu VIEW.........cvevveeeieinieinreeinieeeneeineennes 89

5.3 Customize Ul implementation through Source Codecoevrninenennieneneneeneseseeeee 94
WOrKing With SDK APL......cuuiiiiiiiiieiiinettineetseseetsessssets e ssssssesssasesssssassssesssasesssssasessas 100
6.1 (2= o 1= OSSOSO TSP SO OSSO PSP PRURRUTPROPRIRI 100
6.1.1 How to render a specified page to @ bitmapcccoeeeerieinieiniereseeeeeee e 101
6.1.2 How to render a specified page to a platform device contextccceceveereenerneneeneennee 102
6.2 TOXE PO ittt ettt sttt b et b et b e bRt et e Rt Rt nt e tenreeneenaennens 103
6.2.1 How to get the text area on a page by SeleCtioncccvevevererenenenennesesesese e 103
6.3 TEXE SEAICHN .ttt ettt re e 104
6.3.1 How to search a text pattern in @ PDF ... 104
6.4 BOOKMAIK (OULIINEG) ettt ettt e st e e s esbbe e e e sareeesares 105
6.4.1 How to travel the bookmarks of a PDF in depth first order........cccoeeeeveinccnennenceneenee 106
6.5 REAAING BOOKMAIKcuiiiieieiieieieeee ettt et sttt 107
6.5.1 How to add a custom reading bookmark and enumerate all the reading bookmarks......108
6.6 ATLACNIMENT .ttt ettt b e st b et e et be b nbeeeneas 109
6.6.1 How to embed a specified file to @ PDF dOCUMENTcccvcivirinininenenenenenesesesese e 109
6.6.2 How to export the embedded attachment file from a PDF and save it as a single file 109
6.7 ANNOTATION ettt st et e s b e s st e te b e s b e e st et e besbe e b e besresneennennens 110
6.7.1 How to add annotations t0 @ PDF PAGE......ccccveviririniniinenenesesesie s s e ssessessessessesnens 111
6.7.2 How to delete annotations iN @ PDF PAGE......coccceriiriirieiinieinieenieisieseeiesteie e vestesesaenesees 113
6.7.3 How to register listeners to receive annNotation EVENTES.......ccvevevevineneneeeneneseseeeseenees 113
6.8 B O I e bbb r e s bt r e b b e aere 114
6.8.1 How to import and export form data from or to @ XML file ...ccecvvevvenvinieninininenenenenennne 115
6.9 SECUITLY rerteeteite ettt ettt ettt sttt st st e s be s besabesabesatesatesabesatesabesabesabesatesasesasesnsesasesnns 115
6.9.1 How to encrypt a PDF file With PaSSWOId........ccccovivirinieinieirieirierieeeeseee st 116

6.10 SIENATUNE. .ttt sttt n et r e r e e 116

10

11

6.10.1 How to sign a PDF document and verify the Signaturec..cccoeveeveincnccnenneneeneeee 117

6.10.2 How to set customized time information for SigNAatureccoecvereeneiinecenenseneeeseeenen 119
Creating @ CUSTOM TOO]coiiiiiieeiiinnerienneeresssnnensessnesssssnsasssssnnssssssnssssssnsassssnnssssssanes 121
7.1 Create a Regional Screenshot Tool in ObjJective-Cu......cccirerieiniinenieinienenieeeesesseseenens 121
7.2 Create a Regional Screenshot TOO! iN SWiIftccccverieriiiinineneinieeeeeseseeese e 128
Implement Foxit PDF SDK for iOS uSiNg COrdovacccccevierrnerrenscnerissssnessessnsnssssonsesssssnnes 134
Implement Foxit PDF SDK for iOS using React Nativeccoeevreeeeeeennnnenensnennnsnennnnnnes 135
Implement Foxit PDF SDK for iOS using Xamarin...........cccivivviiinnineiinnnseninsnsneesnsssssessessnees 136
FAQ .eiiitinttintiesttessassessnssesasssssassssssssssassossassesssssssassossnssesssssssassossnssesssssssasssssnssssssssssasssssnssase 137
11.1 BItCOAR SUP PO ittt sttt sttt st ettt e st et et sbe st e besbesbaessebesbesssensensens 137
1.2 Open a PDF document from a specified PDF file path.....cccccecvvivenevincniinenesienenienens 137
11.3 Display a specified page when opening a PDF doCUmMeNt.....cccoceceveirieeninienenieenieeneeen. 139
1.4 License key and serial number cannNot WOrKcceivirenieniiinenienieincneseeee e 141
11.5 Add a link annotation t0 @ PDF fil€....c.cciiiiiiiirieeeeee et 141
11.6 Insert an image iNtO @ PDF file.....cociirieieseeceee et 142
1.7 Highlight the links in PDF documents and set the highlight color.......ccceceeevnininene. 143
11.8 Highlight the form fields in PDF form files and set the highlight color..........cccceevnc.... 144
11.9 Indexed Full TeXt SEarch SUPPOIT. ...ttt esae e sbesssessenae s 145
11.10 Print PDF dOCUMENT ..ottt ettt ettt st st be b e 147
11.11 Night MOde COIOr SEHLINES ..couviriiriiriiteert ettt s be e s e sesbesreesensens 148
11.12 Upload Foxit SDK Framework to Apple APP StOre.....ccvviveevieniinenienienieneseesienieseesenaens 149
11.13 Output exception/crash [0g information ... 150
11.74 LOCAlZAtION SEEINES ..eoveeiteirieiieeteerte ettt sttt n et b e b 150

11.15 Update page binding to support Right-to-Left ... 150

11.16 Issue With OPENINg WED PDFSccviriiieiiirerieininesieseesie e sessesseseesessessessesessessensenens 153

11.17 Implement UIScrollViewDelegate EVENLScccciviverienieininienieesesieseeeeessessessesessessesseneas 154
11.18 Improve efficiency in inserting and rendering watermarkscccccvevennerenereneenennen. 155
11.19 Enable ink (handwriting) reCOZNItIONccuciveirireeere et 155

T2 TeChNiCal SUPPOIteuiiiiiiiiiiiitinttenttneetrsss s sesss st s sssassesssssesasssssassesssssesasssesasssssnssasans 156

1 Introduction to Foxit PDF SDK

1.1 Foxit PDF SDK

Foxit PDF SDK provides high-performance libraries to help any software developer add robust PDF
functionality to their enterprise, mobile and cloud applications across all platforms (includes
Windows, Mac, Linux, Web, Android, iOS, and HarmonyOS Next/OpenHarmony), using the most

popular development languages and environments.

Application developers who use Foxit PDF SDK can leverage Foxit's powerful, standard-compliant
PDF technology to securely display, create, edit, annotate, format, organize, print, share, secure,
search documents as well as to fill PDF forms. Additionally, Foxit PDF SDK includes a built-in,
embeddable PDF Viewer, making the development process easier and faster. For more detailed

information, please visit the website https://developers.foxit.com/products/pdf-sdk/.

In this guide, we focus on the introduction of Foxit PDF SDK for iOS platform.

1.2 Foxit PDF SDK for iOS

Have you ever worried about the complexity of the PDF specification? Or have you ever felt lost
when asked to build a full-featured PDF app within a limited time-frame? If your answer is "Yes",
then congratulations! You have just found the best solution in the industry for rapidly integrating

PDF functionality into your apps.

Foxit PDF SDK for iOS focuses on helping developers easily integrate powerful Foxit PDF technology
into their own mobile apps. With this SDK, even developers with a limited knowledge of PDF can

quickly build a professional PDF viewer with just a few lines of code on iOS or macOS platforms.
1.2.1 Why Foxit PDF SDK for iOS is your choice

Foxit is a leading software provider of solutions for reading, editing, creating, organizing, and
securing PDF documents. Foxit PDF SDK libraries have been used in many of today’s leading apps,
and they are proven, robust, and battle-tested to provide the quality, performance, and features

that the industry's largest apps demand.

https://developers.foxit.com/products/pdf-sdk/

Foxit PDF SDK for iOS provides quick PDF viewing and manipulation support for iOS or macOS

Devices. Customers choose it for the following reasons:

o Easy to integrate

Developers can seamlessly integrate the SDK into their own apps with just a few lines of code.

e Perfectly designed
Foxit PDF SDK for iOS is designed with a simple, clean, and friendly style, which provides the best

user experience.

¢ Flexible customization
Foxit PDF SDK for iOS provides the source code for the user interface which lets the developers have

full control of the functionality and appearance of their apps.

¢ Robust performance on mobile platforms
Foxit PDF SDK for iOS provides an OOM (out-of-memory) recovery mechanism to ensure the app has

high robust performance when running the app on a mobile device which offers limited memory.

e Powered by Foxit's high fidelity rendering PDF engine
The core technology of the SDK is based on Foxit's PDF engine, which is trusted by a large number of
the world's largest and well-known companies. Foxit's powerful engine makes the app fast on

parsing, rendering, and makes document viewing consistent on a variety of devices.

e Premium World-side Support

Foxit offers premium support for its developer products because when you are developing mission
critical products you need the best support. Foxit has one of the PDF industry's largest team of
support engineers. Updates are released on a regular basis to improve user experience by adding

new features and enhancements.
1.2.2 Main Frame of Foxit PDF SDK for iOS

Foxit PDF SDK for iOS consists of three elements as shown in the following table. This structure is
shared between all mobile platform versions of Foxit PDF SDK, which makes it easier to integrate

and support multiple mobile operating systems and frameworks in your apps.

Note : From version 7.4, Foxit PDF SDK for iOS provides a new package which supports to build a Mac
version app built with Mac Catalyst.

Component Name Description Platform and Provision Method

Android: FoxitRDKUIExtensions.aar
An open source library .]))
iO0S: uiextensionsDynamic.framework

Ul EXTENSIONS (or project) with built-in
Ul MacOS: uiextensionsDynamic.xcframework
HarmonyOS Next: FoxitRDKUIExtensions.har
A utility class for PDF Android: FoxitRDK.aar

PDF VIEW CONTROL
base viewing feature iOS: FoxitRDK.framework

MacOS: FoxitRDK.xcframework
PDF base operation HarmonyOS Next: FoxitRDK.har
class at PDF data level OpenHarmony: FoxitRDK.har

PDF CORE

e PDF Core API

The PDF Core API is the heart of this SDK and is built on Foxit's powerful underlying technology. It
provides the functionality for basic PDF operation features, and is utilized by the PDF View Control
and Ul Extensions Component, which ensures the apps can achieve high performance and
efficiency. The Core API can be used independently for document rendering, analysis, text
extraction, text search, form filling, digital signatures, Pressure Sensitive Ink, certificate and

password security, annotation creation and manipulation and much more.
¢ PDF View Control

The PDF View Control is a utility class that provides the functionality for developers to interact with
rendering PDF documents per their requirements. With Foxit's renowned and widely used PDF
rendering technology at its core, the View Control provides fast and high quality rendering, zooming,
scrolling and page navigation features. The View Control derives from platform related viewer

classes such as UlView on iOS and allows for extension to accommodate specific user needs.
¢ Ul Extensions Component

The Ul Extensions Component is an open source library that provides a customizable user interface
with built-in support for text selection, markup annotation, outline navigation, reading bookmarks,
full-text searching, form filling, text reflow, attachment, digital/handwritten signature, reflow,
document editing and password encryption. These features in the Ul Extensions Component are

implemented using the PDF Core APl and PDF View Control. Developers can utilize these ready-to-

use Ul implementations to build a PDF viewer quickly with the added benefit of complete flexibility

and control to customize the Ul design as desired.

From version 4.0, Foxit PDF SDK for iOS made a big change and optimization for the Ul Extensions
Component. Now, it wraps the basic Ul implementations to FSPDFReader class, such as panel
controller, toolbar settings, and alert view, etc. Building a full-featured PDF Reader is getting simpler
and easier. Furthermore, users can flexibly customize the features they want through a

configuration file.

From version 5.0, Foxit PDF SDK for iOS removed the FSPDFReader class, and moved the wrapped
APIs in FSPDFReader class to Ul Extensions Component. In version 5.0, every element in the built-in
Ul can be configurable. More advanced APIs and more powerful configuration file are provided for
developers to further customize the Ul elements, such as showing or hiding a specific panel,
top/bottom toolbar, the items in the top toolbar, and the items in the View setting bar and More

Menu view.
1.2.3 Ul Extensions Component Overview

The Ul Extensions Component uses "module" mechanism which refines each feature into a module.
All of the modules except LocalModule (used for file management) will be loaded by default if Ul
Extensions is added. Users can customize module through implementing Module interface class,
and then call UIExtensionsManager#registerModule to register the custom module to current
UlExtensions manager. When not in use, you can call UIExtensionsManager#unregisterModule to

unregister it from current UlExtensions manager.

UlExtensionsManager contains the main-frame Ul, such as top/bottom toolbar, and other Ul
components which are shared between each module. Meanwhile, through UlExtensionsManager,
each feature module can also be loaded separately. And when loaded, the feature module will adapt
and adjust the main-frame Ul, as well as establish the connection of message event response. Each
feature module may contain its module-specific Ul components, and have its self-contained
message event handling logic. UlExtensionsManager will also be responsible for distributing
messages and events received from View Control component to each feature module. The following

figure shows the detailed relationship between UlExtensionsManager and modules.

UIExtensions

Manager [
UL Main &
— |
Frame H
.......... Yoo, Y Y A Y Y Y S, S
Other Annotation outi :
H Medule (Note, utline Signature i Other
Common @ topbar more menu bottom bar |=&---Ul Interaction ---B| Markup Freetext Module Module | Module..
Controls Pencil) i

A\ y A\ Y Y

Signature Signature
View Tool
Control Handler

Annotation Tool Panel View
Handler Handler Contral

The relationship between UlExtensionsManager and modules

Tool handler and annotation handler will process the events from touch screen or gestures of
PDFViewCtrl. When the touch screen and gestures occur, PDFViewCtrl will send the corresponding

events to UlExtensionsManager:

a) If atool handler exists currently, UlExtensionsManager will send the corresponding events to

the current tool handler, and then event-handing process ends.

b) If an annotation is selected currently, UlExtensionsManager will send the corresponding
events to the annotation handler corresponding to the currently selected annotation, and

then event-handing process ends.

c) If currently no tool handler exists and no annotation is selected, UlExtensionsManager will
send the corresponding events to selection tool handler. Text Selection tool is used for
processing the related events for text selection. For example, select a piece of text, and add
Highlight annotation. Blank Selection tool is used for processing the related events for blank

space. For example, add a Note annotation on the blank space.

Note: Tool Handler and Annotation Handler will not respond the events at the same time. Tool Handler is
primarily used for annotation creation (currently, the creation of link annotation is not supported),
signature creation and text selection. Annotation Handler is mainly used for annotation editing and form
filling. The following figure shows the event response flow chart between Tool Handler and Annotation
Handler.

PDFViewCtrl
event trigger

Current
UIExtensionsManager) Has a Tool 3 Tool
event Handler Yes Handler End
event
A
No
Has a Selected

Yes—m= Annotation
Handler event

selected
Annotatio

Selection Tool
Handler Event

The event response flow chart between Tool Handler and Annotation Handler

1.2.4 Key Features of Foxit PDF SDK for iOS

Foxit PDF SDK for iOS has several main features which help app developers quickly implement the

functions that they really need and reduce the development cost.

Note: From version 7.1, Foxit PDF SDK for iOS supports the new appearance of iOS 13 Dark Mode. All the

built-in controls in the tools framework can adapt their appearance to match the current system

appearance for a seamless experience.

Features

Description

PDF Document

Open and close files, set and get metadata.

PDF Page Parse, render, read, and edit PDF pages.

Render Graphics engine created on a bitmap for platform graphics device.
Reflow Rearrange page content.

Crop Crop PDF pages for betting reading.

Text Select

Select text in a PDF document.

Text Search

Search text in a PDF document, and provide indexed Full-Text Search

Outline Directly locate and link to point of interest within a document.
Reading , ,
Bookmark Mark progress and interesting passages as users read.
Annotation Create, edit and remove annotations.
Layers Add, edit, and remove optional content groups.
Attachments Add, edit, and remove document level attachments.
Fill form with JavaScript support, export and import form data by
Form XFDF/FDF/XML file.
Support to create TextField, CheckBox, RadioButton, ComboBox, ListBox,
and Signature Field.
XFA Support static and dynamic XFA.
Sign a PDF document, verify a signature, add or delete a signature field.
Signature Add and verify third-party digital signature.
Support Long term validation of signatures (LTV).
Fill Fill flat forms (i.e. non-interactive forms) with text and symbols.
Security Protect PDFs with password or certificate.

Pan and Zoom

Adjust the magnification and position of the view area to match the areain

an adjustable rectangle in the Pan & Zoom window's thumbnail view of the

page.

Print

Print PDF document.

RMS

Support Microsoft RMS decryption with the standard IRMv1 and IRMv2.

Comparison

Compare two PDF documents, and mark the differences between them.

Scanning Scan and convert paper documents to PDFs.
Speak Support to read out the text of PDF file.
Split Screen Support split screen.

Right-to-Left

Support Right-to-Left.

Out of Memory

Recover from an OOM condition

Note Outline is the technical term used in the PDF specification for what is commonly known as
bookmarks in traditional desktop PDF viewers. Reading bookmarks are commonly used on mobile and
tablet PDF viewers to mark progress and interesting passages as users read but are not technically outline
and are stored at app level rather than within the PDF itself.

Support robust PDF applications with Foxit PDF SDK for iOS

Development of robust PDF applications is challenging on mobile platforms which has limited
memory. When memory allocation fails, applications may crash or exit unexpectedly. To deal with
this issue, Foxit PDF SDK for iOS provides an out-of-memory (OOM) mechanism to support

applications.

OOM is an evolved feature in Foxit PDF SDK for iOS because of its complexity. The key of OOM
mechanism is that Foxit PDF SDK for iOS will monitor the usage of memory and take recovery
operations automatically once OOM is detected. During the recovery process, Foxit PDF SDK for iOS
reloads the document and page automatically and restores the status to the original before OOM. It
means the current reading page and location, as well as page view mode (single or continuous page)

can be recovered. However, the data generated from editing will be lost.

Foxit PDF SDK for iOS provides a property "shouldRecover" in FSPDFViewCtrl class. By default, the
value of "shouldRecover" is "YES". If you do not want to enable the auto-recovery when OOM is

detected, you can set "shouldRecover" to "No" as follows:

self.pdfViewControl = [[FSPDFViewCtrl alloc] initWithFrame:[[UIScreen mainScreen] bounds]];

self.pdfViewControl.shouldRecover = NO;

At that time, the application will throw an exception, and may crash or exit unexpectedly.

1.3 Evaluation

Foxit PDF SDK allows users to download trial version to evaluate SDK. The trial version has no
difference from the standard licensed version except for the free 10-day trial limitation and the trial
watermarks in the generated pages. After the evaluation period expires, customers should contact

the Foxit sales team and purchase licenses to continue using Foxit PDF SDK.

1.4 License

Developers should purchase licenses to use Foxit PDF SDK in their solutions. Licenses grant

developers permission to release their apps which utilize Foxit PDF SDK. However, users are

prohibited to distribute any documents, sample code, or source code in the released package of

Foxit PDF SDK to any third party without written permission from Foxit Software Incorporated.

1.5 About this Guide

This guide is intended for the developers who need to integrate Foxit PDF SDK for iOS into their own
apps. It aims at introducing the following sections:

e Section 1: gives an introduction of Foxit PDF SDK, especially for iOS platform SDK.
e Section 2: illustrates the package structure and running demos.

e Section 3: describes how to quickly create a full-featured PDF Reader.

e Section 4: describes how to quickly create a full-featured PDF Reader using Mac Catalyst.
e Section 5: introduces how to customize the user interface.

e Section 6: shows how to use Foxit PDF SDK Core API.

e Section 7: shows how to create a custom tool.

e Section 8: shows how to implement Foxit PDF SDK using Cordova

e Section 9: shows how to implement Foxit PDF SDK using React Native

e Section 10: shows how to implement Foxit PDF SDK using Xamarin

e Section 11: lists some frequently asked questions.

e Section 12: provides support information.

2 Getting Started

It is very easy to setup Foxit PDF SDK for iOS and see it in action! It takes just a few minutes and we
will show you how to use it on the iOS or macOS platforms. The following sections introduce the

structure of the installation package and how to run a demo.

2.1 Requirements

Note: From version 7.5.1, Foxit PDF SDK for iOS only supports 64-bit devices. It is because that in iOS 11

and later, all apps use the 64-bit architecture, please see the Apple developer guide.

The package without Mac Catalyst:

e i0S 11.0 or higher

e Xcode 9.0 or newer
Note: iOS 13 or higher requires Xcode version 11 or higher.
The package with Mac Catalyst:

e macOS 10.15 or higher
e Xcode 11 or higher

2.2 What is in the Package
Foxit PDF SDK for iOS provides two packages as follows:
o foxitpdfsdk_9_1_ios.zip: only support building apps on an iPhone or iPad.
o foxitpdfsdk_9_1_ios_catalyst.zip: support building apps on an iPhone, iPad or a Mac.

Note: If you want to build apps on macOS, you can choose the foxitpdfsdk_9_1_ios_catalyst.zip
package.

2.2.1 The package without Mac Catalyst

Download the "foxitpdfsdk_9_1_ios.zip" package, and extract it to a new directory like

"foxitpdfsdk_9_1_ios" as shown in Figure 2-1. The package contains:

10

https://developer.apple.com/documentation/uikit/app_and_environment/updating_your_app_from_32-bit_to_64-bit_architecture

docs:

icc_profile

libs:

samples:
getting_started_ios.pdf:

legal.txt:

release_notes.txt:

A folder containing API references, developer guide,
and upgrade warnings.

The default icc profile files used for output preview
feature

A folder containing license files, SDK framework, Ul
Extensions Component and source code.

A folder containing iOS sample projects.

A quick guide for Foxit PDF SDK for iOS.

Legal and copyright information.

Release information.

In the "libs" folder as shown in Figure 2-2, there are items that make up the core components of

Foxit PDF SDK for iOS, and a configuration file for cocoaPods tool and a script file for stripping the

arm architectures.

@ @ foxitpdfsdk_9_1_ios
B=cc = % a
TXT
docs getting_started_io icc_profile legal.txt libs
s.pdf
release_notes.txt samples
Figure 2-1

11

@ @ libs

SHELL TXT

FoxitPDF.podspec FoxitPDFScanUL.fr FoxitRDK.framew pdfscan prepare- rdk_key.txt
amework ork framew...pstore.sh
TXT
rdk_sn.txt uiextensions_src uiextensionsDyna

mic.framework

Figure 2-2

FoxitRDK.framework - The framework that includes the Foxit PDF SDK dynamic library and

associated header files.

uiextensionsDynamic.framework - The framework that includes UlExtensions dynamic
library, associated header files, and the resource files that are needed for the default built-in
Ul implementations.

FoxitPDFScanUl.framework - The framework that includes Foxit PDF SDK for scanning
dynamic library, associated header files, and the resource files that are needed for the
default built-in Ul implementations of scanning feature.

FoxitPDF.podspec - A configuration file for cocoaPods tool which is used to manage the

third-party libraries. It has been used in section "Implement Foxit PDF SDK for iOS using

React Native".

prepare-framework-to-publish-to-appstore.sh - A script file used to strip the arm
architectures from Foxit SDK Framwork. This is because Foxit SDK Framwork includes arm64,
armv7, i386, and x86_64 architectures, but the i386, and x86_64 architectures are not
allowed to be uploaded to Apple App Store.

pdfscan project - It is an open source library that contains the Ul implementations for
scanning feature, which can help developers rapidly integrate scanning feature into their iOS

app, or customize the Ul for scanning as desired.

uiextensions project - found in the "libs/uiextensions_src" folder. It is an open source library
that contains some ready-to-use Ul module implementations and the basic Ul design for
app, which can help developers rapidly embed a fully functional PDF reader into their iOS

12

app. Of course, developers are not forced to use the default Ul, they can freely customize
and design the Ul for their specific apps through the "uiextensions" project.

Note: For iOS 13 or higher, you should use Xcode 11 or higher to build the "uiextensions" project.

2.2.2 The package with Mac Catalyst

Download the "foxitpdfsdk_9_1_ios_catalyst.zip" package, and extract it to a new directory. The
contents in this package are similar to the "foxitpdfsdk_9_1_ios.zip" package. You can refer to the

previous section "The package without Mac Catalyst" for more information.

In the "libs" folder as shown in Figure 2-3, the difference is that the FoxitRDK.xcframework and
uiextensionsDynamic.xcframework can support to build a Mac version of your iPad app using Mac

Catalyst.

Note: Currently, the RMS and Scanning features are not supported by the Mac version app.

® ® libs
< =m= =y % Q
SHELL TXT TXT
FoxitPDFScanUL.fr FoxitRDK.xcframe pdfscan prepare- rdk_key.txt rdk_sn.txt
amework work framew...pstore.sh

uiextensions_src uiextensionsDyna
mic.xcframework

Figure 2-3
2.3 How to run a demo

Download and install Xcode IDE (https://developer.apple.com/download/).

Note: In this guide, we do not cover the installation of Xcode. You can refer to Apple’s developer site if you
haven't installed it already.

Foxit PDF SDK for iOS provides three useful demos (Function demo, Viewer Control demo, and
Complete PDF viewer demo) in both Objective-C and Swift programming languages for developers

to learn how to call the SDK. The Swift demos are located in the "swift" folder. (See Figure 2-4)

13

Note: The complete PDF viewer demo in Swift provides tabs reading mode to support viewing multiple PDF

documents.
@® samples
> Bl=m= @ % a
complete_pdf vie function_demo samples.xcworks swift test_files viewer_ctrl_demo
wer pace
Figure 2-4

Foxit PDF SDK for iOS (Mac Catalyst) provides a Complete PDF viewer demo in Objective-C for
developers to learn how to call the SDK. The demo is located in the "samples" folder. To run this
demo, please make sure that your macOS version is 10.15 or higher and Xcode version is 11 or

higher.
2.3.1 Function demo

The function demo is provided with Objective-C and Swift programming languages, which is used to
show how to use Foxit PDF SDK for iOS to realize some specific features related to PDF with PDF
core API. This demo includes the following features:

e pdf2txt: extract text from a PDF document to a TXT file.

e outline: edit outline (aka bookmark) appearances and titles.

e annotation: add annotations and export annotations to a JSON file.

e docinfo: export document information of a PDF to a TXT file.

e render: render a specified page to Bitmap.

e signature: add a signature to PDF, sign PDF and verify the signature.

e image2pdf: convert images to PDF files.

e watermark: add text, image and PDF-page watermarks to PDF files.

e search: search PDF files.

o graphics_objects: create a PDF document with graphics objects.

14

To run it in Xcode, follow the steps below:

a)

9

Double-click function_demo.xcodeproj found in the "samples/function_demo" folder to
open the demo in Xcode. (For Swift, double-click function_demo_swift.xcodeproj found in

the "samples/swift/function_demo_swift" folder)

Note: There is another way to open the demo in Xocde: double-click samples_xcworkspace

found in the "samples" folder. It is a workspace including the three demos.

Click on "Product -> Run" to run the demo on an iOS device or simulator. In this guide, an
iPhone Simulator will be used as an example. After building the demo successfully, the

features are listed like the Figure 2-5.

1:66 =
5223 ﬁqtetr?tx Eg??xaﬁi:l{: paf2ixt
e e
et sitanet ot
IE;;_]I_ofritlecfocument infoto a i
E;agiciﬁ:aap:ﬁ,peciﬁed page ErRGr
e s aniore o | gnature
Convert images to PDF files. image2pdf
dte mase PO atermark
Search PDF files. search
Create a PDF Doc with graphics_obj
graphics objects. ects

Figure 2-5

Click the feature buttons in the above picture to perform the corresponding actions. For
example, click "pdf2txt", and then a message box will be popped up as shown in Figure 2-6. It
shows where the text file was saved to. Just run the demo and try the features.

15

Foxit PDF SDK for iOS
Developer Guide

1:56 v T @)

Extract text from a PDF
document to a TXT file.

Edit outline (aka bookmark)
appearances and titles.

Add annotations and export
annotations to a JSON file.

Export document info to a

«HRRE

TXT file.
Render
to Bitm Successfully!
The generated file was saved to /
Add a ¢ Users/xiaole/Library/Developer/

CoreSimulator/Devices/
and Ve 2B0A1C22-150D-4FCO-8B0C-650A9A
B897A0/data/Containers/Data/
Application/EEB97590-FACF-4C24-

B3A0-A404616AB581/Documents/
Conver pdf2txt/FoxitBigPreview.txt
Add te; oK
waterm.. -

Search PDF files.

Create a PDF Doc with
graphics objects.

8

Figure 2-6

2.3.2 Viewer control demo

The viewer control demo is provided with Objective-C and Swift programming languages, which is
used to demonstrate how to implement the features related to the View Control feature level, such
as performing annotations (note, typewriter, highlight, underline, strikeout, squiggly, etc.), outline,
reading bookmarks and text search. The logical structure of the code is quite clear and simple so
that developers can quickly find the detailed implementation of features which are used widely in
PDF apps, such as a PDF viewer. With this demo, developers can take a closer look at the APIs
provided in Foxit PDF SDK.

To run the demo in Xcode, please refer to the setup steps outlined in the Function demo.

Figure 2-7 shows what the demo looks like after it was built successfully. Here, an iPhone Simulator

will be used as an example to run the demo.

16

Foxit PDF SDK for iOS
Developer Guide

5:16 = =

foxit

Faxit PDF SDK

forAndroid/iOS

~z

PDF

L"/L'L/Lr“x/,f(i’)(.’[. com

Figure 2-7

This demo provides the features like text search and listing reading bookmarks, outline, annotations
and digital signatures. For example, click 2= , select the second tab (outline), then the outline of this

document will be displayed as shown in Figure 2-8.

Note Outline is the technical term used in the PDF specification for what is commonly known as
bookmarks in traditional desktop PDF viewers. Reading bookmarks are commonly used on mobile and
tablet PDF viewers to mark progress and interesting passages as users read but are not technically

outlines and are stored at app level rather than within the PDF itself.

17

517 = (.

Close Outline Edit

> Introduction to Foxit PDF SDK

Feature Spotlight

> Introduction to PDF

> Technical Support

Add

Figure 2-8

2.3.3 Complete PDF viewer demo

Complete PDF Viewer demo without Mac Catalyst

documents.

The complete PDF viewer demo demonstrates how to use Foxit PDF SDK for iOS to realize a
completely full-featured PDF viewer which is almost ready-to-use as a real world mobile PDF reader.
This demo utilizes all of the features and built-in Ul implementations which are provided in Foxit PDF
SDK for iOS.

Note: The complete PDF viewer demo in Swift provides tabs reading mode to support viewing multiple PDF

To run the demo in Xcode, please refer to the setup steps outlined in the Function demo.

Here, we will build and run the Swift demo in an iPhone Simulator. After building the demo

successfully, on the start screen, it lists the "Sample.pdf" and "complete_pdf_viewer_guide_ios.pdf"

18

Foxit PDF SDK for iOS
Developer Guide

documents. If you want to view multiple PDF documents, clickE] to switch to the tabs reading

mode (see Figure 2-9.).

Note If you want to use some other PDF files to test this demo, you need to put them onto the "Document"”
folder of the device.

Documents

8= Name [

complete_pdf_viewer_guide_ios.pdf

2024-04-17 10:17 983 KB

- Sample.pdf

—_ 2024-04-17 10117 122 K8

Switch reader mode

Do you want to switch to tabs
reader mode?

Cancel OK

Figure 2-9

Click OK to switch to the tabs reading mode. Select the "complete_pdf_viewer_guide_ios.pdf"
document, and then click the Back button fd, and select the "Sample.pdf", then it will be displayed

as shown in Figure 2-10. Now, you can browse the two PDF documents by switching the tabs.

19

Foxit PDF SDK for iOS
Developer Guide

: .
I g T 2 ¢ G

{
» complete_pdf_viewer_... Sample.pdf

foxit

Faxit PDF SDK

forANndroid/iOS

~

PDF

www.foxit.com

D
1]
G &8 N
Figure 2-10

This demo realizes a completely full-featured PDF viewer, please feel free to run it and try it.

For example, it provides the page thumbnail feature. You can click the thumbnail menu 53 at the

bottom toolbar, and then the thumbnail of the document will be displayed as shown in Figure 2-11.

20

Foxit PDF SDK for iOS
Developer Guide

Close Thumbnail Edit

Pl Annotated Bookmarked

Figure 2-11

2.3.3.2 Complete PDF Viewer demo with Mac Catalyst

To run the "complete_pdf_viewer" demo in Xcode, please follow the steps below:

a)

Double-click complete_pdf viewer.xcodeproj found in the "samples/complete_pdf_viewer"

folder to open the demo in Xcode.

Click on "Product -> Run" to run the demo on an iOS device/simulator or on your Mac. Here,
select "My Mac" as the run destination for example. After building the demo successfully, on
the start screen, it lists the "Sample.pdf" and "complete_pdf_viewer_guide_ios.pdf"

documents as shown in Figure 2-12.

The features provided in this demo is similar to "Complete PDF Viewer demo without Mac

Catalyst".

21

Foxit PDF SDK for iOS
Developer Guide

Note: You may need to register your Mac using a development provisioning profile which allows
your app to launch on devices and use certain app services during development.

@ 0 complete_pdf_viewer
Documents
Name [Time Size
Ll complete_pdf viewer_guide_ios.pdf
2024-04-1813:47 0BI KB
Sample.pdf
2024-04-18 13:47 122 KE
Figure 2-12

22

3 Rapidly building a full-featured PDF Reader

Foxit PDF SDK for iOS wrapped all of the Ul implementations including the basic Ul for app and
ready-to-use Ul feature modules to Ul Extensions Component, so that developers can easily and
rapidly build a full-featured PDF Reader with just a few lines of code. This section will help you to
quickly get started with using Foxit PDF SDK for iOS to make a full-featured PDF Reader app (only
can be deployed to iPhone or iPad devices) in Objective-C and Swift with step-by-step instructions

provided.

3.1 Make an iOS app in Objective-C with Foxit PDF SDK for iOS

This section will help you to quickly make an iOS app in Objective-C using Foxit PDF SDK for iOS. It

includes the following steps:

Create a new iOS project in Objective-C

e |ntegrate Foxit PDF SDK for iOS into your apps

e |nitialize Foxit PDF SDK for iOS

e Display a PDF document using FSPDFViewCtrl

e Build a full-featured PDF Reader with Ul Extensions Component

e Add the scanning feature based on the full-featured PDF Reader

3.1.1 Create a new iOS project in Objective-C

In this guide, we use Xcode 12.0.1 to create a new iOS project.

Fire up Xcode, choose File -> New -> Project..., and then select iOS -> Single View App as shown in
Figure 3-1. Click Next.

23

Foxit PDF SDK for iOS
Developer Guide

Choose a template for your new project:

Multiplatform iOS macOS watchOS tvOS Other ®
Application
A E ¥ B B
N <> oo
App Document App Game Augmented Sticker Pack App
Reality App

£
iMessage App

Framework & Library

= fa N
Framework Static Library Metal Library
Cancel Next

Figure 3-1

Choose the options for your new project as shown in Figure 3-2. Please make sure to choose
Objective-C as the programming language. For simplicity, we don't check the Unit Tests and Ul Tests

which are used for automated testing. Then, Click Next.

Choose options for your new project:

Product Name: | pdfreader

Team: Add account...
Organization Identifier: com.foxitcorporation
Bundle Identifier: com.foxitcorporation.pdfreader

Interface: Storyboard

Life Cycle: UIKit App Delegate

Language: Objective-C

Use Core Data

Include Tests

Cancel Previous m

Figure 3-2

24

Foxit PDF SDK for iOS
Developer Guide

Place the project to the location as desired. The option "Source control" is not actually important for
building your first PDF app, so let's not check the Git repository. Here, we place the project to
desktop as shown in Figure 3-3. Then, click Create.

G v B 9 Desktop < Q
Favorites

o Downloads

A\ Applications

£ Recents

[Desktop

@ Documents

iCloud
& iCloud Drive

Locations

Tags

Source Control: Create Git repository on my Mac

Add to: Don't add to any project or workspace

o B

Group:

New Folder Options Cancel

Figure 3-3

25

Foxit PDF SDK for iOS
Developer Guide

3.1.2 Integrate Foxit PDF SDK for iOS into your apps

We will integrate the default built-in Ul of the SDK into the example project. For simplicity and
convenience, this example project will directly use Ul Extensions component, instead of source code
project. We only need to add the following library files to the PDFReader project.

o FoxitRDK.framework
e uiextensionsDynamic.framework

e (optional) FoxitPDFScanUl.framework (Required by the scan module)

To add the above three dynamic framework files into the pdfreader project, please follow the steps

below:

a) Right-click the "pdfreader" project, select Add Files to "pdfreader"... as shown in Figure 3-4.

ece & > A pdreader) 8 iPhone 11 pofreader

mMEOQASCFDBE 8| < & pdfreader.
¥ [pdfreader
v © pdfreader
u AppDelega Open in Tab
 AppDelega OPen in New Window ¥ identity
Open with External Editor
Open As »

Show in Finder
General Signing & Capabilities Resource Tags info Bulld Setings Bulld Phases Build Rules

1 SceneDele
1 SceneDele:
\ ViewContr¢ Show File Inspector er Bundle Identifier com foxitcorporation pdfreader
m ViewContrt New Eile,..

LR Add Files to “pdfreader”..

[Assets.xcal

Launchser|
Info.plist New Group ¥ Deployment info
w main.m New Group without Folder 051405 Bhicre
» O Products iPad
Sort by Name Mag
Sort by Type)
Find in Selected Groups...
Devi
Source Control »
: : iscape
Project Navigator Help Landscape Right
Status Bar Style Default B
Hide status bar
Requires full scraen
+ & o8 + - © supgorts multiple windows

Figure 3-4

b) Find and choose "FoxitRDK.framework" in the "libs" folder of the download package, and
then click Add as shown in Figure 3-5.

Note: Make sure to check the "Copy items if needed" option.

26

Foxit PDF SDK for iOS
Developer Guide

EEIZQAS

v & pdfreader 1
¥ pdfreader

4 AppDelegate.h

| AppDelegate.m

h SceneDelegate.

w/ SceneDelegate.

h ViewController

w ViewController.a

B

Main.storyboarc

LaunchScreen.s
| Info.plist
m main.m

» = Products

+ [EFiter

® A, pdireader) {8 iPhone 11 pdfreader: Ready | Today at 7:46 PM W;

< EE= - s 5 Q ®
Favorites

© pownloads a P

A\ Applications —_— sl

& Recents FoxitPDF.podspec FoxitPDFScanULir pdfscan prepare-

amework framew...pstore.sh

[Desktop

[Documents e ey
iCloud T —_— —_—

rak_key.txt rok_sn.txt uiextensions_src. uiextensionsDyna
5 mic.framework
Destination: | B Copy items if needed

5 Assets.xcassets (¢ iCloud Drive

Added folders:) Create groups

Create folder references

Add to targets: § A, pdfreader

 New Folder _

o + - ©

Options
¥ App Icons and Launch Images.

® Applcons Source _ Appicon

Cancel Add

0

Figure 3-5

Repeat the steps like a) and b) to add "uiextensionsDynamic.framework" and

"FoxitPDFScanUl.framework". Then, the pdfreader project will look like the Figure 3-6.

{4 FoxitPDFScanUl.framework
3 uiextensionsDynamic.framework
2 FoxitRDK.framework

K Z Q A © & D B
v % pdfreader

v pdfreader

h AppDelegate.h
AppDelegate.m

m

1 SceneDelegate.h
SceneDelegate.m
h ViewController.h

ViewController.m
Main.storyboard
75 Assets.xcassets
LaunchScreen.storyboard
| Info.plist

m/ main.m

» . Products

+ G Filter

Q)=

Figure 3-6

27

d) Embed the dynamic frameworks. Left-click the project, find Frameworks, Libraries, and
Embedded Content in the General tab, and then choose "Embed & Sign" as shown in Figure

ece > By pdltroader » [iPhona 11 pdfreader: Ready | Today at 7:53 PM + & (mE]
wmETQAQF DB B < [& pafreader xcodepraj 1E]
L 2 pdfeader
4 FoxitPDFScanULframework —
o) General | Sioning & Caabiliies Resource Tags Info Build Setings Bulld Phases Bulld Rules
t Dy fi k
130 ulextensionsDynamic framewor
Ep— PROJECT
5 FoxitRDK.framework N #op Icons Source Applcan Be
v pdfreader & pfreader
Launch Screon Filo LaunchScreen
L AppDelegate.h TARGETS Y e o
. pdfreacler
By (sl = ¥ Supparted Intents
s SceneDelegate.h
» ScensDelsgate.m Class Name Authentication
| ViewController.h
! ViewController.m A intents eligible for in-anp handling here
Main.storyboard
[Assets.xcassets +
LaunchScreen storyboard
R v Frameworks, Libraries, and Embedeled Content
) mainm Name Embed
» = Products i FoxitPOF ScanULframewor Embed & Sign &
5 FoxitRDK A Embed & Sign 5
extensi Embed & Sign &
¥ Development Assets
s here
+ & QF + - ©

Figure 3-7
Now, we have added "FoxitRDK.framework", "uiextensionsDynamic.framework" and
"FoxitPDFScanUl.framework" to the pdfreader project successfully.

3.1.3 Initialize Foxit PDF SDK for iOS

It is necessary for apps to initialize and unlock Foxit PDF SDK for iOS using a license before calling
any APIs. The function + [FSLibrary initialize:key:] is provided to initialize Foxit PDF SDK. The trial
license files can be found in the "libs" folder of the download package. After the evaluation period
expires, you should purchase an official license to continue using it. Finish the initialization in the
didFinishLaunchingWithOptions method within the AppDelegate.m file.

#import "AppDelegate.h"
#import <FoxitRDK/FSPDFObjC.h>

@interface AppDelegate ()
@end
@implementation AppDelegate

- (BOOL)application:(UlApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{

// The value of "sn" can be found in the "rdk_sn.txt".
// The value of "key" can be found in the "rdk_key.txt".
28

NSString* sn = @" ";
NSString* key = @" ";

FSErrorCode eRet = [FSLibrary initialize:sn key:key];
if (FSErrSuccess != eRet) {
return NO;

}
return YES;

}
@end

Note The parameter "sn" can be found in the "rdk_sn.txt" (the string after "SN=") and the "key" can be
found in the "rdk_key.txt" (the string after "Sign=").

3.1.4 Display a PDF document using FSPDFViewCtrl

So far, we have added Foxit PDF SDK for iOS frameworks to the pdfreader project, and finished the
initialization of the Foxit PDF SDK. Now, let's start displaying a PDF document using FSPDFViewCtrl

with just a few lines of code.
Note: The Ul Extensions Component is not required if you only need to display a PDF document.

First of all, add a PDF file to the project which will be used as the test file. For example, we use
"Sample.pdf" found in the "samples\test_files" folder of the download package. Right-click the
pdfreader project, and select Add Files to "pdfreader"... to add this file. After adding, you can see
the PDF in the Xcode's Copy Bundle Resources as shown in Figure 3-8.

Note: You can add the PDF to Copy Bundle Resources directly. Just left-click the pdfreader project, find
Copy Bundle Resources in the Build Phases tab, press on the + button, and choose the file to add. You

can refer to any PDF file, just add it to the Xcode’s Copy Bundle Resources.

29

Foxit PDF SDK for iOS
Developer Guide

ene € >

v[= peftreader |

= Sample.pdf

13 FoxitRDK framework
¥ = pdfreader
. AppDelegate.h
m AppDelegate.m
1 SceneDelegate.h
n SceneDelegate.m
b ViewController.h
m ViewController.m
Main.storyboard

[Assets.xcassets

Info.plist
m main.m
» © Products

+ [EDFie

I8 FoxitPDFScanUl.framework
5 uiextensionsDynamic.framework

LaunchSereen.storyboard

A, pdfreader) B8 iPhone 11

= @HO0aaA ¢ s D B

Q| +

pelfreader; Ready | Taday at 7:57 PM
[ndfreader.xcodeprof

g <
[pdfreader

n] General Signing & Capabilities Resource Tags Infe Build Settings | Build Phases | Build Rules

PROJECT +
[y pdfreader

TARGETS
A, pdfreader

» Dependencies (0 items)
» complle Sources (4 items)
¥ Link Binary With Libraries (3 items)

¥ Copy Bundle Resources (4 items)

= Sample pdf

LaunchScreen,storyboard

£ Assets xcassets _in preader

Main.storyboard
+

» Embed Frameworks (3 items)

®

Figure 3-8

Then, add the following code to ViewController.m to display a PDF document. It's really easy to

present a PDF on screen. All you need is to get a PDF file, instantiate a FSPDFViewCtrl object and call

- [FSPDFViewCtrl openDoc:password:completion:] function to open and display the PDF.

Update ViewController.m as follows:

#import "ViewController.n"

#import <FoxitRDK/FSPDFViewControl.h>

@interface ViewController ()

@end

@implementation ViewController

- (void)viewDidLoad {
[super viewDidLoad];

// Get the path of a PDF.

NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" of Type:@"pdf"];

// Initialize a FSPDFViewCtrl object with the size of the entire screen.

FSPDFViewCtrl* pdfViewCtrl;

pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

// Open an unencrypted PDF document.
[pdfViewCtrl openDoc:pdfPath password:nil completion:nil];

// Add the pdfViewCtrl to the root view.

[self.view addSubview:pdfViewCtrl];

30

Foxit PDF SDK for iOS
Developer Guide

- (void)didReceiveMemoryWarning {
[super didReceiveMemoryWarning];
/1 Dispose of any resources that can be recreated.

}
@end

Fantastic! We have now finished building a simple iOS app which uses Foxit PDF SDK to display a PDF

document with just a few lines of code. The next step is to run the project on a device or simulator.

In this guide, we build and run the project on an iPhone Simulator, and you will see that the
"Sample.pdf" document is displayed as shown in Figure 3-9. Now, this sample app has some basic
PDF features, such as zooming in/out and page turning. Just have a try!

N
<
)
1

foxit

Foxit PDF SDK

forAndroid/iOS

~
-
PDF

www.joxit.com

Figure 3-9

31

3.1.5 Build a full-featured PDF Reader with Ul Extensions Component

Foxit PDF SDK for iOS comes with built-in Ul design including the basic Ul for app and the feature
modules Ul, which are implemented using Foxit PDF SDK and are shipped in the Ul Extensions
Component. Hence, building a full-featured PDF Reader is getting simpler and easier. All you need to
do is to instantiate a UlIExtensionsManager object, and then set it to FSPDFViewCtrl.

Instantiate a UIExtensionsManager object and set it to FSPDFViewCtrl

In the "ViewController.m" file, you only need to add the following code:
#import <uiextensionsDynamic/uiextensionsDynamic.h>

UlExtensionsManager® extensionsManager;

extensionsManager = [[UIExtensionsManager alloc] initWithPDFViewControl:pdfViewCtrl];
pdfViewCtrl.extensionsManager = extensionsManager;

Add permissions to access camera, microphone, photo library and bluetooth

In order to access the camera, microphone, photo library and bluetooth in iOS 9.0 or higher, you

need to do the following configuration in the "Info.plist".

<key>NSCameraUsageDescription</key>

<string>The App needs to access your Camera, please allow</string>

<key>NSMicrophoneUsageDescription</key>

<string>The App needs to access your Microphone, please allow</string>

<key>NSPhotoLibraryAddUsageDescription</key>

<string>The App needs to add pictures into your Photo Library, please allow</string>

<key>NSPhotoLibraryUsageDescription</key>

<string>The App needs to access your Photo Library, please allow</string>

<key>NSBluetoothAlwaysUsageDescription</key>

<string>RDK only lets you connect to apple pencil or keyboard.</string>

<key>NSBluetoothPeripheralUsageDescription</key>

<string>RDK only lets you connect to apple pencil or keyboard.</string>

The whole update of ViewController.m is as follows:

#import "ViewController.h"
#import <FoxitRDK/FSPDFViewControl.h>

32

Foxit PDF SDK for iOS
Developer Guide

#import <uiextensionsDynamic/uiextensionsDynamic.h>

@interface ViewController ()

@end

@implementation ViewController

{

}

UlExtensionsManager* extensionsManager;

- (void)viewDidLoad {

}

[super viewDidLoad];

// Get the path of a PDF.
NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" of Type:@"pdf"];

// Initialize a FSPDFViewCtrl object with the size of the entire screen.
FSPDFViewCtrl* pdfViewCtrl;
pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

// Open an unencrypted PDF document.
[pdfViewCtrl openDoc:pdfPath password:nil completion:nil];

// Add the pdfViewCtrl to the root view.
[self.view addSubview:pdfViewCtrl];

/I Instantiate a UlExtensionsManager object and set it to pdfViewCtrl
extensionsManager = [[UIExtensionsManager alloc] initWithPDFViewControl:pdfViewCtrl];
pdfViewCtrl.extensionsManager = extensionsManager;

- (void)didReceiveMemoryWarning {

}

[super didReceiveMemoryWarning];
// Dispose of any resources that can be recreated.

@end

Let's run it on an iPhone Simulator. Now, it is a full-featured PDF Reader as shown in Figure 3-10,

which includes all of the features in Complete PDF Viewer demo. Feel free to try it.

33

Foxit PDF SDK for iOS
Developer Guide

foxit

Faxit PDF SDK

forAndroid/ios

4

PDF

www. foxit.com

D
1]
E a8 (]
Figure 3-10

3.1.6 Add the scanning feature based on the full-featured PDF Reader

The scanning feature is a stand-alone module which is not shipped in the Ul Extensions Component,

so if you want to use this feature in your project, you should add the core code below to call the

scan module:
#import <FoxitPDFScanUl/PDFScanManager.h>

// Initialize the scan module.
[PDFScanManager initializeScanner:0 serial2:0];
[PDFScanManager initializeCompression:0 serial2:0];

// Get the PDFScan controller.
UlViewController *VC = [[PDFScanManager shareManager] getPDFScanView];
if (VC) [self presentViewController:VC animated:YES completion:nil];

[PDFScanManager setSaveAsCallBack:A(NSError * _Nonnull error, NSString * _Nonnull savePath) {

34

Foxit PDF SDK for iOS
Developer Guide

// <add your code>
b2

For + [PDFScanManager initializeScanner:serial2;] and + [PDFScanManager initializeCompression:serial2:]
interfaces, if you set the parameters to 0, then the scanned image will be with watermark. If you do

not want to have watermark, you should contact Foxit sales or support team to get the license key.

Based on the previous section, we add a new button to call the scan module.
Update ViewController.m as follows:

Assuming that you have copied the scan.imageset file in
"samples/complete_pdf_viewer/Source/Assets.xcassets" folder to

"pdfreader/pdfreader/Assets.xcassets" folder.

#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

#import <uiextensionsDynamic/uiextensionsDynamic.h>
#import <FoxitPDFScanUl/PDFScanManager.h>

@interface ViewController ()
@end

@implementation ViewController

{
UlExtensionsManager* extensionsManager;
UlButton *openScanBtn;

}

- (void)viewDidLoad {
[super viewDidLoad];

// Get the path of a PDF.
NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" of Type:@"pdf"];

// Initialize a FSPDFViewCtrl object with the size of the entire screen.

FSPDFViewCtrl* pdfViewCtrl;
pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

// Open an unencrypted PDF document.
[pdfViewCtrl openDoc:pdfPath password:nil completion:nil];

// Add the pdfViewCtrl to the root view.
[self.view addSubview:pdfViewCtrl];

// Instantiate a UlExtensionsManager object and set it to pdfViewCtrl
extensionsManager = [[UIExtensionsManager alloc] initWithPDFViewControl:pdfViewCtrl];

35

Foxit PDF SDK for iOS
Developer Guide

pdfViewCtrl.extensionsManager = extensionsManager;

// Create a scan button.

openScanBtn = [[UIButton alloc] initWithFrame:CGRectMake(self.view.frame.size.width - 80,
self.view.frame.size.height - 140, 60, 60)];

[openScanBtn setimage:[Ullmage imageNamed:@"scan"] forState:UlControlStateNormal];

[openScanBtn addTarget:self action:@selector(openScan:) forControlEvents:UlControlEventTouchUplnside];

// Add the scan button to the root view.
[self.view addSubview:openScanBtn];

// Initialize the scan module.
[PDFScanManager initializeScanner:0 serial2:0];
[PDFScanManager initializeCompression:0 serial2:0];

}

- (IBAction)openScan:(UIButton *)sender{
// Get the PDFScan controller.
UlViewController *VC = [[PDFScanManager shareManager] getPDFScanView];
if (VC) [self presentViewController:VC animated:YES completion:nil];

[PDFScanManager setSaveAsCallBack:A(NSError * _Nonnull error, NSString * _Nonnull savePath) {
if (savePath) {
if (VC.presentingViewController) {
[VC.presentingViewController dismissViewControllerAnimated:NO completion:nil];
}
[VC dismissViewControllerAnimated:NO completion:nil];
}
3
}

- (void)didReceiveMemoryWarning {
[super didReceiveMemoryWarning];
// Dispose of any resources that can be recreated.

}

@end

Run the project on an iPhone Simulator, then you will see the following window (Figure 3-11), tap the

scan button to start scanning documents.

36

Foxit PDF SDK for iOS
Developer Guide

:

w9 T 2 ¢ G

foxit

Faxit PDF SDK

forAndroid/ios

4

PDF

www. foxit.com
\

D
1] o
G a8 (]
Figure 3-11

3.2 Make an iOS app in Swift with Foxit PDF SDK for iOS

Nowadays, Swift is more and more popular for iOS developers because its syntax is much cleaner
and easier to read. To better support Swift developers, this section will help you to quickly make an

iOS app in Swift using Foxit PDF SDK for iOS. It includes the following steps:

e C(Create a new iOS project in Swift

e |ntegrate Foxit PDF SDK for iOS into your apps

e |nitialize Foxit PDF SDK for iOS

e Display a PDF document using FSPDFViewCtrl

e Build a full-featured PDF Reader with Ul Extensions Component

37

Foxit PDF SDK for iOS
Developer Guide

e Add the scanning feature based on the full-featured PDF Reader

3.2.1 Create a new iOS project in Swift

In this guide, we use Xcode 12.0.1 to create a new iOS project.

To create a new iOS project in Swift, you can refer to section 3.1.1 "Create a new iOS project in

Objective-C". The only difference is that you should choose Swift as the programming language (See
Figure 3-12).

Choose options for your new project:

Product Name: | pdfreader|
Team: Add account...

QOrganization Identifier: com.foxitcorporation

Bundle Identifier: com.foxitcorporation.pdfreader

<3|

Interface: = Storyboard

|

Life Cycle: UIKit App Delegate

Language: Swift

Use Core Data

Include Tests

Cancel Previous

Figure 3-12

3.2.2 Integrate Foxit PDF SDK for iOS into your apps

To integrate Foxit PDF SDK for iOS into your apps, please refer to section 3.1.2 "Integrate Foxit PDF

SDK for iOS into your apps" to add the dynamic frameworks "FoxitRDK.framework",

"uiextensionsDynamic.framework" and "FoxitPDFScanUl.framework" into the pdfreader project.
3.2.3 Initialize Foxit PDF SDK for iOS

It is necessary for apps to initialize and unlock Foxit PDF SDK for iOS using a license before calling
any APIs. The function + [FSLibrary initialize:key:] is provided to initialize Foxit PDF SDK. The trial
license files can be found in the "libs" folder of the download package. After the evaluation period
expires, you should purchase an official license to continue using it. Finish the initialization in the

application method within the AppDelegate.swift file.

38

import FoxitRDK

func application(_ application: UlApplication, didFinishLaunchingWithOptions launchOptions:
[UlApplicationLaunchOptionsKey: Any]?) -> Bool {
let sn=""
let key =
let eRet = FSLibrary.initialize(sn, key:key)
if .errSuccess != eRet {
return false

}

return true

}

Note The parameter "sn" can be found in the "rdk_sn.txt" (the string after "SN=") and the "key" can be
found in the "rdk_key.txt" (the string after "Sign=").

3.2.4 Display a PDF document using FSPDFViewCtrl

So far, we have added Foxit PDF SDK for iOS frameworks to the pdfreader project, and finished the
initialization of the Foxit PDF SDK. Now, let's start displaying a PDF document using FSPDFViewCtrl

with just a few lines of code.
Note: The Ul Extensions Component is not required if you only need to display a PDF document.

First of all, add a PDF file to the project which will be used as the test file. For example, we use
"Sample.pdf" found in the "samples\test_files" folder of the download package. Right-click the
pdfreader project, and select Add Files to "pdfreader"... to add this file. After adding, you can see

the PDF in the Xcode's Copy Bundle Resources as shown in Figure 3-13.

Note You can add the PDF to Copy Bundle Resources directly. Just left-click the pdfreader project, find
Copy Bundle Resources in the Build Phases tab, press on the + button, and choose the file to add. You
can refer to any PDF file, just add it to the Xcode’s Copy Bundle Resources.

39

Foxit PDF SDK for iOS

.
Developer Guide

ene MO > A pdireader) [iPhone 11 | pdireader: Ready | Today st 4:13 PM £ pe n:]

= EH R A Ao gD B < & pafreader.xcodeproj ic]

v| & pdireader £ peffreader

« Sample.pdf
& FoxitPDFScanUl framework in] General Signing & Capablities Resource Tags Info Bulld Settings Build Rules
(&4 uiextensionsDynamic framework PROJECT + ®
184 FoxitRDK.framewark & pdireader
¥ © pdfreader TARGETS
+ AppDelegate.swift A pdfreader
. SceneDelegate.swift

> Dependencies (0 items)
> Compile Sources (3 items) *

= ViewController swift » Link Binary With Libraries (3 items) ®
Main.storyboard
5 Assets.xcassets ¥ Copy Bundle Resources (4 items) X
LaunchScreen.storyboard
Info.piist
» I Products

LaunchSereen storyboard
[Assets.xcassets .in pdfreader
Main staryboard

» Embed Frameworks (3 items) x

+ [EF o]z @

Figure 3-13

Then, add the following code to ViewController.swift to display a PDF document. It's really easy to
present a PDF on screen. All you need is to get a PDF file, instantiate a FSPDFViewCtrl object and call

- [FSPDFViewCtrl openDoc:password:completion:] function to open and display the PDF.
Update ViewController.swift as follows:

import UIKit
import FoxitRDK

class ViewController: UlViewController {

override func viewDidLoad() {
super.viewDidLoad()

// Get the path of a PDF.
let pdfPath = Bundle.main.path(forResource: "Sample", ofType: "pdf")!

// Initialize a FSPDFViewCtrl object with the size of the entire screen.
var pdfViewCtrl: FSPDFViewCtrl!
pdfViewCtrl = FSPDFViewCtrl.init(frame:self.view.bounds)

// Set the document to display.
pdfViewCtrl.openDoc(pdfPath, password: nil, completion: nil)

// Add the pdfViewCtrl to the root view.
self.view.insertSubview(pdfViewCtrl, at: 0)

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}
}

40

Fantastic! We have now finished building a simple iOS app in Swift which uses Foxit PDF SDK to
display a PDF document with just a few lines of code. The next step is to run the project on a device

or simulator.

In this guide, we build and run the project on an iPhone Simulator, and you will see that the
"Sample.pdf" document is displayed as shown in Figure 3-14. Now, this sample app has some basic
PDF features, such as zooming in/out and page turning. Just have a try!

5:12

)
[]

foxit

PDF

Figure 3-14

3.2.5 Build a full-featured PDF Reader with Ul Extensions Component
Foxit PDF SDK for iOS comes with built-in Ul design including the basic Ul for app and the feature
modules Ul, which are implemented using Foxit PDF SDK and are shipped in the Ul Extensions

Component. Hence, building a full-featured PDF Reader is getting simpler and easier. All you need to

do is to instantiate a UlExtensionsManager object and set it to FSPDFViewCtrl.

41

Foxit PDF SDK for iOS
Developer Guide

Instantiate a UIExtensionsManager object and set it to FSPDFViewCtrl

In the "ViewController.swift" file, you only need to add the following code:

import uiextensionsDynamic

var extensionsManager: UlExtensionsManager!

extensionsManager = UlExtensionsManager(pdfViewControl: pdfViewCtrl)
pdfViewCtrl.extensionsManager = extensionsManager;

Add permissions to access camera, microphone, photo library and bluetooth

In order to access the camera, microphone, photo library and bluetooth in iOS 9.0 or higher, you

need to do the following configuration in the "Info.plist".

<key>NSCameraUsageDescription</key>

<string>For adding photographs to your PDF files.</string>

<key>NSMicrophoneUsageDescription</key>

<string>RDK need to add record permissions,please allow</string>

<key>NSPhotoLibraryAddUsageDescription</key>

<string>RDK need to add picture permissions,please allow</string>

<key>NSPhotoLibraryUsageDescription</key>

<string>For adding pictures to your PDF files.</string>

<key>NSBluetoothAlwaysUsageDescription</key>

<string>RDK only lets you connect to apple pencil or keyboard.</string>

<key>NSBluetoothPeripheralUsageDescription</key>

<string>RDK only lets you connect to apple pencil or keyboard.</string>

The whole update of ViewController.swift is as follows:

import UIKit
import FoxitRDK
import uiextensionsDynamic

class ViewController: UlViewController {
var extensionsManager: UlExtensionsManager!

override func viewDidLoad() {
super.viewDidLoad()

42

Foxit PDF SDK for iOS
Developer Guide

// Get the path of a PDF.
let pdfPath = Bundle.main.path(forResource: "Sample", ofType: "pdf")!

// Initialize a FSPDFViewCtrl object with the size of the entire screen.
var pdfViewCtrl: FSPDFViewCtrl!
pdfViewCtrl = FSPDFViewCtrl.init(frame:self.view.bounds)

// Set the document to display.
pdfViewCtrl.openDoc(pdfPath, password: nil, completion: nil)

// Add the pdfViewCtrl to the root view.
self.view.insertSubview(pdfViewCtrl, at: 0)

// Initialize a UIExtensionsManager object and set it to pdfViewCtrl.
extensionsManager = UlExtensionsManager(pdfViewControl: pdfViewCtrl)
pdfViewCtrl.extensionsManager = extensionsManager;

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.
}
}

Let's run it on an iPhone Simulator. Now, it is a full-featured PDF Reader as shown in Figure 3-15,

which includes all of the features in Complete PDF Viewer demo. Feel free to try it.

43

Foxit PDF SDK for iOS
Developer Guide

foxit

Faxit PDF SDK

forAndroid/ios

4

PDF

www. foxit.com

D
1]
G a8 (]
Figure 3-15

3.2.6 Add the scanning feature based on the full-featured PDF Reader

The scanning feature is a stand-alone module which is not shipped in the Ul Extensions Component,
so if you want to use this feature in your project, you should add the core code below to call the

scanning module:
import FoxitPDFScanUl

// Initialize the scan module.
PDFScanManager.initializeScanner(0, serial2: 0);
PDFScanManager.initializeCompression(0, serial2: 0);

// Get the PDFScan controller.

let VC = PDFScanManager.share().getPDFScanView();

self.present(VC, animated: true, completion: nil);

PDFScanManager.saveAsCallBack = { (error, savePath) -> () in
// <add your code>

a4

Foxit PDF SDK for iOS
Developer Guide

}

For + [PDFScanManager initializeScanner:serial2;] and + [PDFScanManager initializeCompression:serial2:]
interfaces, if you set the parameters to 0, then the scanned image will be with watermark. If you do

not want to have watermark, you should contact Foxit sales or support team to get the license key.

Based on the previous section, we add a new button to call the scan module.
Update ViewController.swift as follows:

Assuming that you have copied the scan.imageset file in
"samples/swift/complete_pdf_viewer_swift/Sources/Assets.xcassets/" folder to

"pdfreader/pdfreader/Assets.xcassets" folder.

import UIKit

import FoxitRDK

import uiextensionsDynamic
import FoxitPDFScanUl

class ViewController: UlViewController {

var extensionsManager: UlExtensionsManager!
var openScanBtn: UlButton!

override func viewDidlLoad() {
super.viewDidLoad()

// Get the path of a PDF.
let pdfPath = Bundle.main.path(forResource: "Sample", of Type: "pdf")!

// Initialize a FSPDFViewCtrl object with the size of the entire screen.
var pdfViewCtrl: FSPDFViewCtrl!
pdfViewCtrl = FSPDFViewCtrl.init(frame:self.view.bounds)

// Set the document to display.
pdfViewCtrl.openDoc(pdfPath, password: nil, completion: nil)

// Add the pdfViewCtrl to the root view.
self.view.insertSubview(pdfViewCtrl, at: 0)

// Initialize a UlExtensionsManager object and set it to pdfViewCtrl.
extensionsManager = UlExtensionsManager(pdfViewControl: pdfViewCtrl)
pdfViewCtrl.extensionsManager = extensionsManager;

// Create a scan button.

openScanBtn = UIButton(frame: CGRect(x: view.frame.size.width - 80, y: view.frame.size.height - 140, width:
60, height: 60))

openScanBtn.setimage(Ulimage(named: "scan"), for: .normal);

45

Foxit PDF SDK for iOS
Developer Guide

openScanBtn.addTarget(self, action: #selector(openScan(_:)), for: .touchUplnside)

// Add the scan button to the root view.
self.view.addSubview(openScanBtn);

// Initialize the scan module.
PDFScanManager.initializeScanner(0, serial2: 0);
PDFScanManager.initializeCompression(0, serial2: 0);

}

@IBAction func openScan(_sender: UIButton) {
let VC = PDFScanManager.share().getPDFScanView();
self.present(VC, animated: true, completion: nil);
PDFScanManager.saveAsCallBack = { (error, savePath) -> () in
if ((savePath) != nil) {
if ((VC.presentingViewController) != nil) {
VC.presentingViewController?.dismiss(animated: false, completion: nil)
}
VC.dismiss(animated: false, completion: nil)
}
}
}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.
}
}

Run the project on an iPhone Simulator, then you will see the following window (Figure 3-16), tap the

scan button to start scanning documents.

46

Foxit PDF SDK for iOS
Developer Guide

<

i
o=

i
J

B 9O Tl

2

O @

foAndroid/ios
O .

S
y,

Od%,
S &
J/" 7

www.foxit.com
)

D
il ‘
&2 a8 J
Figure 3-16

47

4 Rapidly building a full-featured PDF Reader
using Mac Catalyst

The previous section introduces how to build a full-featured PDF Reader app with Foxit PDF SDK for
i0S, which can be only deployed to iPhone and iPad devices. In this section, we will use Foxit PDF
SDK for iOS (Mac Catalyst) to build a full-featured PDF Reader app in Objective-C, which users can

run on an iPhone/iPad or a Mac device. It includes the following steps:

e (Create a Mac app built with Mac Catalyst

e Integrate Foxit PDF SDK for iOS (Catalyst) into your apps

e |nitialize Foxit PDF SDK for iOS (Catalyst)

e Display a PDF document using FSPDFViewCtrl

e Build a full-featured PDF Reader with Ul Extensions Component

4.1.1 Create a Mac app built with Mac Catalyst

In this section, we use Mac Catalyst to create a Mac app with Xcode 12.0.1. Please refer to section

3.1.1 "Create a new iOS project in Objective-C" to create a Mac project named "pdfreader_catalyst".

4.1.2 Integrate Foxit PDF SDK for iOS (Catalyst) into your apps

We will integrate the default built-in Ul of the SDK into the example project. For simplicity and
convenience, this example project will directly use Ul Extensions component, instead of source code

project. We only need to add the following library files to the pdfreader_catalyst project.

o FoxitRDK.xcframework

e uiextensionsDynamic.xcframework

e (optional) FoxitPDFScanUl.framework (Required by the scan module. Only support iOS platform,
and does not support macQOS platform)

To add the above three dynamic framework files into the pdfreader_catalyst project, please follow

the steps below:

48

Foxit PDF SDK for iOS
Developer Guide

a) Add support for Mac. Left-click the project, find Deployment Info in the General tab, select
the Mac checkbox as shown in Figure 4-1. (If your app supports iPhone/iPad only, the

checkbox is unavailable.)

ece 1| »

- EITQAAS
v L pdfreader_catalyst
¥ pdfreader_catalyst

1 AppDelegate.h
m AppDelegate.m

4 SceneDelegate.h
m| SceneDelegate.m

& o @ B

[pdfreader_catalyst.entitiements

A pdfreader_catalyst) B8 My Mac

& pdireader_catalyst

PROJECT
E3 petreader catalyst
TARGETS

pdireader catalyst: Ready | Today at 5:35 PM

[pafreader. catalyst.xeadeprof

General Signing & Capablities Resource Tags Info Bulld Seftings Build Phases Build Rules

¥ Identity

App Category None

Display Name:

h| ViewController.h

m| ViewControllerm
Main.storyboard

[Assets.xcassets
LaunchScreen.storyboard
Info. plist

| main.m

» = Products.

oH + - ©

Bundle Identifier | com.foxitcarporation.pdireader-catalyst
Version 1.0

Build 1

¥ Deployment Info

0511.0¢ @ iPhone
iPad

macos 1015 [E Mac_|

Main Interface Main

Bevice Grientation @ Portrait

Upside Down

@ Landscape Left

Landscape Right

Status Bar Style Default

Hide status bar

") Requires full screen
supports multiple windows

Figure 4-1

b) Drag the FoxitRDK.xcframework, uiextensionsDynamic.xcframework and

FoxitPDFScanUl.framework in the "libs" folder of the download package to the

pdfreader catalyst project.

Note: Make sure to check the "Copy items if needed" option when dragging the framework (See

Figure 4-2).

® A pfreader_catalyst) B My Mac | peffreader catalyss: Ready | Today at 5:38 Pl
& F I QA © 4 choose options for adding these files: ®
v 5 pdfreader_catalyst
DF’ e :fl i Destination: | € Copy items if needed —
reader_catalyst.er
P Ll Added folders: € Create groups
- Jopenssosiely Create folder references
 AppDelegate.m
. SceneDelegate.h Add to targets: [A, pdfreader_catalyst
w SceneDelegate.m
4 ViewController.h
! ViewController.m
Main.storyboard
[Assets.xcassets
LaunchSereen.storyh
Info.plist
| main.m
» . Products
Status Bar Style Default o
Hido status bar
Racires full screen
Supparts multiple windows
¥ App lcons and Launch Images
— Apo lcons Source Applcon o
+ & GEH + - @

Figure 4-2

49

Foxit PDF SDK for iOS
Developer Guide

¢) Embed the dynamic frameworks. Left-click the project, find Frameworks, Libraries, and
Embedded Content in the General tab, and then choose "Embed & Sign" and the

supported platforms as shown in Figure 4-3.

Note: The FoxitPDFScanUl.framework only support iOS platform.

ece > A pdfreader catalyst) 8 My Mac ndfreader catalyst: Ready | Today at 5:41 P + | & [m:]
BETQAOQCSFDEBC I8 pdfresder. cataiyst.xcodeproj c]
¥ 1 pdfreader_catalyst & pdireader_catalyst
i FoxitPDFScanUl framework . .)
uiextensionsDynamic.xcframew.

- App Icons Source _ Applcan)
S FoXitRDK xcframework PROJECT P Icons Souree Applcar B

¥ © pdfreader_catalyst 2 pofreader_catalyst Launeh Sereen File LaunchScreen
[pdfreader_catalystentitements TARCETS
R) AppDslegate.h A pofreader catalyst 7 Supported Intents
u AppDelegate.m Class Name Authentication

4| SceneDelegate.h
m SceneDelegate.m Add intents oligible for In-agp handling here
1 ViewController.h

| ViewController.m +
Main.storyboard
[Assetsacassets ¥ Framevorks, Libraries, and Embedded Content
LaunchSereen.storyboard
f Name Platiorms Embed
Info.plist -
i 5 FoxitPDFScanll framework 08 Embed & Sign
| main.m = -
= 88 FoxlIRDK xcframemwork macOS + 0SS Embed & Sian <
» O Preducts =
88 viextensionsDynamic.cframewark macOS + i0ST Embed & Sign T
+
¥ Development Assets
4 sats |
+ &2 eH + - @

Figure 4-3

d) Check for Framework search paths. Left-click the project, find Search Paths in the Build
Settings tab, check if the Framework search paths is set, if not, please set it correctly. (See
Figure 4-4)

Note: You may need to set the $(PROJECT_DIR) to be recursive. Just double click the path and set it.

ene I » A pdfreader catalyst) B My Mac | pdfreader_catalyst Ready | Today at 6:08 PN + || | B
=BT aQA Q& D H B8< [odfroader catalyst. ccodsproi ®B
v [pdfreader_catalyst & pofreader catalyst
4 FoxitPDF SeanUlframework
- N ; .] General Signing & Capsbilites Resource Tags Infa | Bulld Settings | Buld Phsses Bulld Rules
B uiextensionsDynamic xclramewer
i FoxitRDK xchramework eROECT [—] levels Q- soarch paihe °

(3 pdfreader_catalyst
¥ pdfreadsr_catalyst a2 ¥ Architectures
[pdfreader_catalyst.entitiements TARGETS Setting A pdireader cetalyst

A patreader catalyst

h| AppDelegate.h Base SOK i0s 7
| AppDelegate.m
1 SceneDelegate.h ¥ Build Optians
| SeeneDelegate.m Satting A plirssor cataly
h | ViewController.h Enable Testing Scarch Paths W3
= ViewContraller.m
Main storyboard ¥ Linking
T Assets.xcassets Satting A pifreader catalys:
Runpath Search Paths @executable_path/Frameworks

LaunchSereen.storyboard

Info.plist
am ¥ Search Paths
N ; - Seting A palirearer_calaly:
< Products
Aluways Search User Paths (Deprecated) No %

Framevwrork Search Paths {Users{TDesktop/ptreader._catalystP*

Haadr Saarch Paths
Library Sesrch Paths
Rez Search Paths
Sub-Dirsctories to Excluda in Recursive Searchos b *Iproj *iramewark *gch *seede” *xeassets (*) .DS_Store CVS svn.
Sub-Directories to Inelude in Recursive Searches

System Framewark Saarch Paths.

System Headar Search Patns

Use Header Maps Ves

= B8 + - @

User Header Search Paths

Figure 4-4

Now, we have added "FoxitRDK.xcframework", "uiextensionsDynamic.xcframework" and

"FoxitPDFScanUl.framework" to the pdfreader_catalyst project successfully.
50

Foxit PDF SDK for iOS
Developer Guide

4.1.3 Initialize Foxit PDF SDK for iOS (Catalyst)

To initialize Foxit PDF SDK for iOS (Catalyst), it is exactly the same as the section 3.1.3 "Initialize Foxit
PDF SDK for iOS".

4.1.4 Display a PDF document using FSPDFViewCtrl

To display a PDF document, it is exactly the same as the section 3.1.4 "Display a PDF document using
FSPDFViewCtrl". Add a PDF file to the project, and add the following code to ViewController.m
referring to "Display a PDF document using FSPDFViewCtrl".

Update ViewController.m as follows:

#import "ViewController.h"
#import <FoxitRDK/FSPDFViewControl.h>

@interface ViewController ()
@end
@implementation ViewController

- (void)viewDidLoad {
[super viewDidLoad];

// Get the path of a PDF.
NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" of Type:@"pdf"];

// Initialize a FSPDFViewCtrl object with the size of the entire screen.
FSPDFViewCtrl* pdfViewCtrl;
pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

// Open an unencrypted PDF document.
[pdfViewCtrl openDoc:pdfPath password:nil completion:nil];

// Add the pdfViewCtrl to the root view.
[self.view addSubview:pdfViewCtrl];
}

- (void)didReceiveMemoryWarning {
[super didReceiveMemoryWarning];

/1 Dispose of any resources that can be recreated.

}

@end

51

Foxit PDF SDK for iOS
Developer Guide

Then, build and run the project. This project can be run on an iPhone/iPad, or a Mac. In this section,
select "My Mac" as the destination and run the project. After building the project successfully, you

will see that the "Sample.pdf"' document is displayed as shown in Figure 4-5.

Note: You may need to register your Mac using a development provisioning profile which allows your app

to launch on devices and use certain app services during development.

[NON | pdfreader_catalyst

Foxit PDF SDK

torAndroid/iOS

~
@
PDF

Figure 4-5

4.1.5 Build a full-featured PDF Reader with Ul Extensions Component

To build a full-featured PDF Reader, it is similar to the section 3.1.5 "Build a full-featured PDF Reader

with Ul Extensions Component". Update the ViewController.m as follows:
#import "ViewController.h"

#import <FoxitRDK/FSPDFViewControl.h>

#import <uiextensionsDynamic/uiextensionsDynamic.h>

@interface ViewController ()

@end

@implementation ViewController

{

UlExtensionsManager* extensionsManager;

}

52

Foxit PDF SDK for iOS
Developer Guide

- (void)viewDidLoad {

}

[super viewDidLoad];

/1 Get the path of a PDF.
NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" of Type:@"pdf"];

// Initialize a FSPDFViewCtrl object with the size of the entire screen.
FSPDFViewCtrl* pdfViewCtrl;
pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

// Open an unencrypted PDF document.
[pdfViewCtrl openDoc:pdfPath password:nil completion:nil];

// Add the pdfViewCtrl to the root view.
[self.view addSubview:pdfViewCtrl];

/I Instantiate a UlExtensionsManager object and set it to pdfViewCtrl
extensionsManager = [[UIExtensionsManager alloc] initWithPDFViewControl:pdfViewCtrl];
pdfViewCtrl.extensionsManager = extensionsManager;

- (void)didReceiveMemoryWarning {

}

[super didReceiveMemoryWarning];
// Dispose of any resources that can be recreated.

@end

Then, build and run the project on your Mac. After building the project successfully, you will see that

the "Sample.pdf" document is displayed as shown in Figure 4-6.

53

Foxit PDF SDK for iOS
Developer Guide

Edit

Comment

Drawing View

B9 T 2

Of“ ‘*f(o oul

¢ @

Ll

Form e

Figure 4-6

54

5 Customizing User Interface

Foxit PDF SDK for iOS provides a simple, clean and friendly user interface for developers to quickly
build a full-featured PDF app without needing to take much time on the design. Furthermore,
customizing the user interface is straightforward. Foxit PDF SDK for iOS provides the source code of
the Ul Extensions Component that contains ready-to-use Ul module implementations, which lets the

developers have full control of styling the appearance as desired.

From version 4.0, developers can flexibly customize the features they want through a configuration
file.

From version 5.0, every element in the built-in Ul can be configurable. More advanced APIs and
more powerful configuration file are provided for developers to further customize the Ul elements,
such as showing or hiding a specific panel, top/bottom toolbar, the items in the top toolbar, and the

items in the View setting bar and More Menu view.

From version 6.3, the configuration file has been enhanced which provides more optional settings to

customize the Ul including the rights management and the properties of Ul elements.

The following section will introduce how to customize the feature modules, rights management and

Ul elements through a configuration file, or APIs, or the source code.

5.1 Customize the Ul through a configuration file

Through a configuration file, developers can easily choose the features module, set the rights
management and the properties of Ul elements without needing to write any additional code or

redesign the app's Ul.
5.1.1 Introduction to JSON file

The configuration file can be provided as a JSON file or implemented directly in code. We
recommend you to use the JSON format which is more intuitive and clearer to view and configure

the items.

You can refer to the JSON file found in "samples\complete_pdf_viewer\Source\Resource\" folder of
Foxit PDF SDK for iOS package. It looks like as follows:

55

Foxit PDF SDK for iOS
Developer Guide

Foxit PDF SDK for iOS
Developer Guide

Foxit PDF SDK for iOS
Developer Guide

Foxit PDF SDK for iOS
Developer Guide

"radioButton": {
"textColor": "#000000"
h
"comboBox": {
"textColor": "#000000",
"textFace": "Courier",
"textSize": 0,
"customText": false
h
"listBox": {
"textColor": "#000000",
"textFace": "Courier",
"textSize": 0,
"multipleSelection": false
}
b
"signature™: {
"color" : "#000000",
"thickness" : 4

e The values in the above JSON file are the default settings for the configuration items. If some
configuration items are not in the JSON file, the default settings will be used. For example, if you

comment out ""highlight": true,”, it is still enabled.

e Only the attachment annotation is not controlled by the subitems in "annotations". Click the
Home button at the top toolbar to select the Comment, then you can find the attachment

annotation, which is as shown in Figure 5-1.

""gttachment": true," controls the attachments panel and attachment annotation. If you set it to
"false", both of them will be disabled. If you want to hide all the tools in the Comment, you should

set both "annotations" and "attachment" to "false".,

60

Foxit PDF SDK for iOS
Developer Guide

Q X

BGeT ™ E

foxit

Foxit PDF SDK

Figure 5-1

5.1.2 Configuration Items Description

The JSON configuration file includes three parts: feature modules, rights management, and Ul
settings (for example, Ul elements properties). This section will set forth the configuration items in

detail.
Configure feature module

The value type of the feature module items is bool, where "true" means that the feature module will

be enabled, and "false" means that the feature module will be disabled. The default value is "true".

Feature Module Description
readingbookmark User-defined bookmark
outline PDF document bookmark

61

annotations

(highlight, underline, squiggly,
strikeout, insert, replace, line,
rectangle, oval, arrow, pencil,
eraser, typewriter, textbox, callout,
note, stamp, polygon, cloud,
polyline, measure, image, audio,

video, redaction)

Annotation module collection

thumbnail PDF page thumbnail display and page management

attachment PDF document attachments and attachment annotations

signature Digital signatures and handwritten signatures

fillSign Fill flat forms (i.e. non-interactive forms) with text and
symbols.

search Text search

navigation PDF page navigation

form Form Filling and form data importing and exporting

selection Text selection

encryption PDF encryption

multipleSelection

Multiple annotations selection

Configure rights management

The value type of the configuration items is bool, where "true" means that the permission will be

enabled, and "false" means that the permission will be disabled. The default value of runjavaScript

and copyText is "true", and the default value of disableLink is "false".

Rights Management

Description

runjavascript

whether to allow to execute JavaScript

copyText

whether to allow to copy text

disableLink

whether to disable hyperlink

Configure Ul settings

Ul Items Description/ | Value Available Value | Default Note
Property Type value
Items
pageMode Page display | String Single/ Single For dynamic XFA
mode Facing/ files, it doesn't
Coverleft/

62

Ul Items Description/ | Value Available Value | Default Note
Property Type value
Items
CoverMiddle/ support Reflow
CoverRight/ mode.
Reflow
continuous Whether to Bool true/false false True means
view pages continuous pages,
continuously false means
discontinuous
pages. Itis invalid
for "Reflow" mode.
zoomMode Page zoom String FitWidth/FitPage | FitWidth
mode
colorMode Page color String Normal/Night/M | Normal "Night" is a special
display mode ap "Map" mode.
mapForegroundColor Foreground RGB #5d5b71 It is vaild only when
color of page "colorMode" is set to
display "Map".
mapBackgroundColor Background RGB #00001b It is vaild only when
color of page "colorMode" is set to
dispay "Map".
reflowBackgroundColor Background RGB HIFFFF
color of
reflow page
disableFormNavigationB | Whether to Bool true/false false
ar disable the
supplementa
ry navigation
bar of the
form
highlightForm Whether to Bool true/false true
highlight
form field
highlightFormColor The highlight | ARGB #200066¢cc | Itinclude alpha
color of channel, and it is
forms

63

Ul Items Description/ | Value Available Value | Default Note
Property Type value
Items
invalid for dynamic
xfa document.
highlightLink Whether to Bool true/false true
highlight
hyperlink
highlightLinkColor The highlight | ARGB #16007fff It include alpha
color of links channel.
fullscreen Whether to Bool true/false true It will be in full
display in full screen mode
screen mode immediately when
opening a document
if "fullscreen” is set
to "true".
If the user clicks on
the page, the toolbar
will be displayed.
After 5 seconds, if it
is in full screen
mode, the toolbar
and other auxiliary
tool buttons will be
hidden
automatically.
enableTopbarDraggable | Whether to Integer | 0,1,2,3 2 0: the topbar
enable dragging is disabled.
dragging 1: the topbar
topbar dragging is enabled

only for iPhone.

2: the topbar
dragging is enabled
only for iPad.

3: the topbar
dragging is enabled
for both iPhone and
iPad.

64

Ul Items Description/ | Value Available Value | Default Note
Property Type value
Items
enableHandwritingRecog | Whether to Bool true/false false
nition enable
handwriting
(ink)
recognition
continuous Bool true/false true Whether to add
lyAdd annotation
annotation continuously
S highlight color RGB #ffff00
opacity numeri | [0.0-1.0] 1.0
C
areaHighlig | color RGB #ffffOO
ht opacity numeri | [0.0-1.0] 1.0
d
underline color RGB #66cc33
opacity numeri [0.0-1.0] 1.0
C
squiggly color RGB #993399
opacity numeri | [0.0-1.0] 1.0
C
strikeout color RGB #ff0000
opacity numeri [0.0-1.0] 1.0
C
insert color RGB #993399
opacity numeri [0.0-1.0] 1.0
C
replace color RGB #0000ff
opacity numeri | [0.0-1.0] 1.0
d
line color RGB #ff0000
opacity numeri [0.0-1.0] 1.0
C
thickness numeri | [1-12] 2
C
rectangle color RGB #ff0000

65

Ul Items Description/ | Value Available Value | Default Note
Property Type value
Items
fillColor RGB #00FFFFFF
opacity numeri | [0.0-1.0] 1.0
C
thickness numeri | [1-12] 2
C
oval color RGB #ff0000
fillColor RGB #00FFFFFF
opacity numeri [0.0-1.0] 1.0
C
thickness numeri | [1-12] 2
C
arrow color RGB #ff0000
opacity numeri [0.0-1.0] 1.0
C
thickness numeri | [1-12] 2
C
pencil color RGB #ff0000
opacity numeri | [0.0-1.0] 1.0
C
thickness numeri | [1-12] 2
C
highlighter | color RGB #ffffOO
opacity numeri | [0.0-1.0] 0.5
C
thickness numeri | [1-12] 12
C
polygon color RGB #ff0000
fillColor RGB #00FFFFFF
opacity numeri [0.0-1.0] 1.0
C
thickness numeri | [1-12] 2
C
cloud color RGB #ff0000
fillColor RGB #00FFFFFF

66

Ul Items Description/ | Value Available Value | Default Note
Property Type value
Items
opacity numeri | [0.0-1.0] 1.0
C
thickness numeri | [1-12] 2
C
polyline color RGB #ff0000
opacity numeri [0.0-1.0] 1.0
C
thickness numeri | [1-12] 2
C
typewriter | textColor RGB #0000ff
opacity numeri [0.0-1.0] 1.0
C
textFace String Courier/ Courier Text font name.
Courier-Bold/ If set to an invalid
Courier- value, the default
BoldOblique/ value will be used.
Courier-
Oblique/
Helvetica/
Helvetica-Bold/
Helvetica-
BoldOblique/
Helvetica-
Oblique/
Times-Roman/
Times-Bold/
Times-Italic/
Times-Boldltalic
textSize Integer | >=1 18
textbox color RGB #ff0000
textColor RGB #0000ff
opacity numeri [0.0-1.0] 1.0
C
textFace String Courier/ Courier Text font name.

Courier-Bold/

67

Ul Items

Description/
Property

Items

Value

Type

Available Value

Default

value

Note

Courier-
BoldOblique/
Courier-
Oblique/
Helvetica/
Helvetica-Bold/
Helvetica-
BoldOblique/
Helvetica-
Oblique/
Times-Roman/
Times-Bold/
Times-Italic/

Times-Boldltalic

If set to an invalid
value, the default

value will be used.

textSize

Integer

>=1

18

callout

color

RGB

#ff0000

textColor

RGB

#0000ff

opacity

numeri

C

[0.0-1.0]

1.0

textFace

String

Courier/
Courier-Bold/
Courier-
BoldOblique/
Courier-
Oblique/
Helvetica/
Helvetica-Bold/
Helvetica-
BoldOblique/
Helvetica-
Oblique/
Times-Roman/
Times-Bold/
Times-Italic/
Times-Boldltalic

Courier

Text font name.
If set to an invalid
value, the default

value will be used.

68

Ul Items Description/ | Value Available Value | Default Note
Property Type value
Items
textSize Integer | >=1 18
note color RGB #ff0000
opacity numeri | [0.0-1.0] 1.0
C
icon String Comment/ Comment | If setto an invalid
Key/ value, the default
Note/ value will be used.
Help/
NewParagraph/
Paragraph/
Insert
attachmen | color RGB #ff0000
t opacity numeri | [0.0-1.0] 1.0
C
icon String Graph/ PushPin
PushPin/
Paperclip/
Tag
image rotation numeri | 0/90/180/270 0 If set to an invalid
C value, the default
value will be used.
opacity numeri | [0.0-1.0] 1.0
C
measure color RGB ff0000
opacity numeri [0.0-1.0] 1.0
C
thickness numeri | [1-12] 2
C
scaleFromUn | String pt/m/cm/mm/in | inch The original unit of
it ch/p/ft/yd the scale.
If set to an invalid
value, the default
value will be used.
scaleToUnit String pt/m/cm/mm/in | inch The target unit of
ch/p/ft/yd the scale.

69

Ul Items Description/ | Value Available Value | Default Note
Property Type value
Items
If set to an invalid
value, the default
value will be used.
scaleFromVal | numeri 1 The original value of
ue C the scale
scaleToValue | numeri 1 The target value of
C the scale
redaction fillColor RGB #000000
textColor RGB #ff0000
textFace String Courier/ Courier Text font name.
Helvetica/ If set to an invalid
Times value, the default
value will be used.
textSize Integer | >=1 12
textField textColor RGB #000000
textFace String Courier/ Courier Text font name.
Helvetica/ If set to an invalid
form Times value, the default
value will be used.
textSize Integer | >=0 0 0 means adjusting
the font size
automatically.
checkBox textColor RGB #000000
radioButto | textColor RGB #000000
n
comboBox | textColor RGB #000000
textFace String Courier/ Courier Text font name.
Helvetica/ If set to an invalid
Times value, the default
value will be used.
textSize Integer | >=0 0 0 means adjusting
the font size
automatically.
customText false Whether to allow to

customize text.

70

Ul Items Description/ | Value Available Value | Default Note
Property Type value
Items
listBox textColor RGB #000000
textFace String Courier/ Courier Text font name.
Helvetica/ If set to an invalid
Times value, the default
value will be used.
textSize Integer | >=0 0 0 means adjusting
the font size
automatically.
multipleSelec false Whether to allow to
tion support multiple
selection.
signature color RGB #000000
thickness numeri | [1-12] 4
C

5.1.3 Instantiate a UIExtensionsManager object with the configuration file

In section 3.1.5 (Objective-C) and section 3.2.5 (Swift), we have already introduced how to instantiate
UlExtensionsManager, and in this way all the built-in Ul framework would be loaded by default. In
this section, we will provide another method to instantiate UlExtensionsManager that uses the

configuration file, so that developers can easily customize the Ul as desired.

Please refer to the following code to instantiate a UlExtensionsManager object with the

configuration file.

Note: You should prepare the JSON configuration file, and then add it to your project. Here, we assume

that you have already added a J/SON file named "uiextensions_config.json".
In ViewController.m: (Objective-C)

UlExtensionsManager* extensionsManager;

// Instantiate a FSPDFViewCtrl object with the size of the entire screen.

FSPDFViewCtrl* pdfViewCtrl;
pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

// Get the path of the JSON configuration file.
71

Foxit PDF SDK for iOS
Developer Guide

NSString* configPath = [[NSBundle mainBundle] pathForResource:@"uiextensions_config" ofType:@"json"];

// Initialize a UlExtensionsManager object and set it to pdfViewCtrl.
extensionsManager = [[UIExtensionsManager alloc] initWithPDFViewControl:pdfViewCtrl configuration:[NSData
dataWithContentsOfFile:configPath]];
if (nil == extensionsManager) {
return;

}

pdfViewCtrl.extensionsManager = extensionsManager;

In ViewController.swift: (Swift)

var extensionsManager: UlExtensionsManager!

// Initialize a FSPDFViewCtrl object with the size of the entire screen
var pdfViewCtrl: FSPDFViewCtrl!
pdfViewCtrl = FSPDFViewCtrl.init(frame:self.view.bounds)

// Get the path of the JSON configuration file.
let configPath = Bundle.main.path(forResource: "uiextensions_config", ofType: "json")
var data: Data?
if nil 1= configPath {
data = NSData(contentsOfFile: configPath!) as Data?

// Initialize a UIExtensionsManager object and set it to pdfViewCtrl.
extensionsManager = UlExtensionsManager.init(pdfViewControl: pdfViewCtrl, configuration: data)
if nil == extensionsMgr {

return

}

pdfViewCtrl.extensionsManager = extensionsManager;

Note: Here, we use a configuration file to instantiate the UlExtensionsManager. If you do not want to use

configuration file, please refer to the section 3.1.5 (Objective-C) and section 3.2.5 (Swift).
5.1.4 Examples for customizing Ul through a configuration file

In this section, we will show you how to customize feature modules, rights management and Ul
settings (for example, Ul elements properties) in your project. You will find it is extremely easy! You

only need to modify the configuration file. Below you can see some examples of how to do it.
72

Foxit PDF SDK for iOS
Developer Guide

Note: For your convenience, we will try it in the "complete_pdf viewer" (Objective-C) and
"complete_pdf viewer _swift" (Swift) demos found in the "samples” folder.

Open the demos in Xcode. Find the configuration file "uiextensions_config.json" under

"complete_pdf_viewer\Resource" or "complete_pdf_viewer_swift\Resource".

Example1: Disable "readingbookmark" and "navigation" feature modules.

In the JSON file, set the values of "readingbookmark" and "navigation" to "false" as follows:

"readingbookmark": false,
"navigation": false,

Then, rebuild and run the demo to see the result. Following lists the comparison diagrams:

Before: After:

foxit foxit

Foxit PDF SDK Foxit

PDF SDK

= =

o
9
o
9

,
o1
5

=]

The "readingbookmark" and "navigation" feature modules are removed.

Exa mple2: Disable hyperlinks.

In the JSON file, set the value of "disableLink" to "true" as follows:

"permissions": {
"runjavaScript": true,
"copyText": true,
"disableLink": true

}I

73

Foxit PDF SDK for iOS
Developer Guide

Then, rebuild and run the demo to see the result, and you will find that there is no any response

when clicking the hyperlinks.

Exa mple3: Set the highlight color from yellow to red.

In the JSON file, set the color property of "highlight" to "#ff0000" as follows:

"highlight": {
"color" : "#ff0000",
"opacity": 1.0

}I

Then, rebuild and run the demo to see the result. Following lists the comparison diagrams:

Before: After:

foxit foxit

[Fexit PDF SDK EEEEIESER

B &8 Q 8 B &8 Q

The highlight color has been changed to red.

5.2 Customize Ul elements through APIs

In version 4.0, Foxit PDF SDK for iOS supports customizing to show or hide the whole top or bottom
toolbar, and from version 5.0, it provides APIs to customize to show or hide a specific panel, the
items in the top/bottom toolbar, View setting bar and More Menu view, which is convenient for

developers to modify the Ul elements in the context of the built-in Ul framework.

From version 8.0, the built-in Ul in the Ul Extensions Component has changed dramatically.

74

Foxit PDF SDK for iOS
Developer Guide

Note: For your convenience, we will show you how to customize Ul elements through APIs in the
"complete_pdf viewer" (Objective-C) and "complete_pdf viewer swift" (Swift) demos found in the
"samples” folder. We assume that you have not modified the "uiextensions_config.json" file in the demos,

which means that all of the built-in Ul in the Ul Extensions Component are enabled.
5.2.1 Customize to hide top/bottom toolbar

In the top/bottom toolbar (See Figure 5-2), you can do the following operations:

1. Show or hide the top/bottom toolbar.

2. Show or hide a specific item in the top/bottom toolbar.
3. Remove a specific tab in the center of the top toolbar.
4

Add a custom item at any position.

" mOoT 200
< a_- [
Mg T 2 ¢ a r‘.
(o) {
left top toolbar right top toolbar
foxit _
Foaxit PDF SDK
Foxit PDF SDK foAndroid/i0S
foPAndroid/iOS
v
=
v,
PDF
~
PDF
www.foxit.com
bottom toolbar
@ l www. foxit.com
[
B % 0 || @

Figure 5-2

Note:

1. For iPad device, it has removed the bottom toolbar.

75

2. For iPhone device, the bottom toolbar is only one part, and the top toolbar is divided into
two parts, so that there are three parts for the toolbar, and each part has a separate index.

For iPad device, it has no bottom toolbar.
Table 5-1 lists the related APIs which are used to customize the top/bottom toolbar.

Table 5-1

(void)enableTopToolbar:(BOOL)isEnabled Enable or disable top toolbar.

(void)enableBottomToolbar:(BOOL)isEnabled Enable or disable bottom toolbar.

(void)setToolbarltemHiddenWithTag:
(FS_TOOLBAR_ITEM_TAG)itemTag
hidden:(BOOL)isHidden

Show or hide the item in the top/bottom
toolbar.

The value of the parameter "itemTag" in setToolbaritemHiddenWithTag interface can be set as

follows, which maps the features in the top/bottom toolbar.

Item name itemTag

Back FS_TOOLBAR_ITEM_TAG_BACK

Search FS_TOOLBAR_ITEM_TAG_SEARCH

More FS_TOOLBAR_ITEM_TAG_MORE

Home FS_TOOLBAR_ITEM_TAG_HOME

Edit FS_TOOLBAR_ITEM_TAG_EDIT

Comment FS_TOOLBAR_ITEM_TAG_COMMENT

Drawing FS_TOOLBAR_ITEM_TAG_DRAWING

Form FS_TOOLBAR_ITEM_TAG_FORM

Fill & Sign FS_TOOLBAR_ITEM_TAG_SIGN

Panel FS_TOOLBAR_ITEM_TAG_PANEL
FS_TOOLBAR_ITEM_TAG_VIEW

View or
FS_TOOLBAR_ITEM_TAG_VIEW_SETTINGS

thumbnail FS_TOOLBAR_ITEM_TAG_THUMBNAIL

Bookmark FS_TOOLBAR_ITEM_TAG_READING_BOOKMARK

In the following examples, we will show you how to customize the top/bottom toolbar through APIs
in the "complete_pdf _viewer" (Objective-C) and "complete_pdf viewer_swift" (Swift) demos found

in the "samples" folder.

76

Foxit PDF SDK for iOS
Developer Guide

Open the demos in Xcode. Add the sample code to the "ViewController.m" (Objective-C) or

"TabsViewController.swift" (Swift) (after the code that initializes UlExtensionsManager).

Note: The built-in Ul is a bit different on iPhone and iPad. Most of the following examples are applicable
for iPhone and iPad, and only one is applicable for iPhone. In this guide, if the custom results on iPhone

and iPad are similar, we only list the result on iPhone.

Example1: Hide the whole top toolbar. (For iPhone and iPad)

Objective-C:

[self.extensionsMgr enableTopToolbar:false];

Swift:

extensionsManager.enableTopToolbar(false)

Before: After:
34 T -
foxit foxit
Eoxit PDF SDK Eoxit PDF SDK
foPANdroid/i0S foPANdroid/i0S
F 4 F 4
PDF PDF
www. foxit.com www. foxit.com
{ o] { o]
I I
B B 88 N B B 88 (]

ExampIeZ: Hide the whole bottom toolbar. (Only for iPhone)

Objective-C:

[self.extensionsMgr enableBottomToolbar:false];

Swift:

extensionsManager.enableBottomToolbar(false)

Before: After:

77

Foxit PDF SDK for iOS
Developer Guide

wiww. foxit. com

www. foxit.com

Example3: Hide the "More menu" item in the top toolbar. (For iPhone and iPad)

Objective-C:

[self.extensionsMgr setToolbarltemHiddenWithTag:FS_TOOLBAR_ITEM_TAG_MORE hidden:YES];

Swift:

extensionsManager.setToolbarltemHiddenWithTag(FS_TOOLBAR_ITEM_TAG_MORE, hidden: true);

Before:

foxit

Faxit PDF SDK

foAndroid/iOs

After:

xit PDF SDK

-
PDF

wivw. foxit.com

78

Foxit PDF SDK for iOS
Developer Guide

Example4: Hide the "Form" tab from the list in the center of the top toolbar. (For iPhone
and iPad)

Objective-C:
[self.extensionsMgr setToolbarltemHiddenWithTag:FS_TOOLBAR_ITEM_TAG_FORM hidden:YES];

Swift:
extensionsManager.setToolbarltemHiddenWithTag(FS_TOOLBAR_ITEM_TAG_FORM, hidden: true)

Before: After:

% Home v
Edit ¢ Home v
& comment Edit
[Drawing & commen t
@ orowing
of Fill&sSign o Fil &Sign
Button Text Description O Button Text Description O
— —

Exampleb5: Hide the "View" item in the bottom toolbar for iPhone, or hide the "View" tab
from the list in the center of the top toolbar for iPad. (For iPhone and iPad)
Objective-C:

[self.extensionsMgr setToolbarltemHiddenWithTag:FS_TOOLBAR_ITEM_TAG_VIEW hidden:YES];

or
[self.extensionsMgr setToolbarltemHiddenWithTag:FS_TOOLBAR_ITEM_TAG_VIEW_SETTINGS hidden:YES];

Swift:
extensionsManager.setToolbarltemHiddenWithTag(FS_TOOLBAR_ITEM_TAG_VIEW, hidden: true)

or
extensionsManager.setToolbarltemHiddenWithTag(FS_TOOLBAR_ITEM_TAG_VIEW_SETTINGS, hidden: true)

for iPhone:

79

Foxit PDF SDK for iOS
Developer Guide

Before:

: fozit

"4t Foxit PDF SDK

e
e oAndroid oS

v -
~z £
POF PDF
www.foxit.com www. foxit.com
I
(5] & [83 A

for iPad:

Before:

Commert Grwg em
T £ ¢ @ mg T2 e @

foxit

Foxit PDF SDK

forAndroid/iOS

~
Y
PDF

www.foxit.com

foxit

Faxit PDF SDK

forAndroid/iOs

~

PDF

www. foxit.com
.

ExampIeG: Add an item in the left top toolbar at the second position. (For Phone and

Tablet) (assume that you have added an image named "snapshot.png" to the complete_pdf_viewer

project)

80

Foxit PDF SDK for iOS
Developer Guide

FSMainTopbar *topbar = self.extensionsMgr.topToolbar;

NSMutableArray *items = topbar.itemsForPositionLeft. mutableCopy;

UlButton *btn = [UIButton new];

[btn setimage:[[Ulimage imageNamed:@"snapshot"] imageWithTintColor:[UIColor whiteColor]]
forState:UlControlStateNormal];

FSMainToolbarltem *item = [[FSMainToolbarltem alloc] initWithCustomView:btn];

[items insertObject:item atindex:1];

topbar.itemsForPositionLeft = items;

The result after running the demo:

foxit

Foxit PDF SDK

N

]
g
=)

Example7: Add an item in the right top toolbar at the first position. (For Phone and

Tablet) (assume that you have added an image named "snapshot.png" to the complete_pdf_viewer

project)

FSMainTopbar *topbar = self.extensionsMgr.topToolbar;

NSMutableArray *items = topbar.itemsForPositionRight.mutableCopy;

UIButton *btn = [UIButton new];

[btn setimage:[[Ullmage imageNamed:@"snapshot"] imageWithTintColor:[UIColor whiteColor]]
forState:UlControlStateNormal];

FSMainToolbarltem *item = [[FSMainToolbarltem alloc] initWithCustomView:btn];

[items insertObject:item atindex:0];

topbar.itemsForPositionRight = items;

The result after running the demo:

81

Foxit PDF SDK for iOS
Developer Guide

foxit

Foxit PDF SDK

N

]
g
E]

Example8: Add an item to the bottom toolbar at the first position. (Only for Phone)

(assume that you have added an image named "snapshot.png" to the complete_pdf_viewer project)

FSMainBottombar *bottomBar = self.extensionsMgr.bottomToolbar;
NSMutableArray *items = bottomBar.itemsForPositionCenter.mutableCopy;
UIButton *btn = [UIButton new];

[btn setimage:[Ulimage imageNamed:@"snapshot"] forState:UlControlStateNormal];
FSMainToolbarltem *item = [[FSMainToolbarltem alloc] initWithCustomView:btn];
[items insertObject:item atindex:0];

bottomBar.itemsForPositionCenter = items;

The result after running the demo:

82

Foxit PDF SDK for iOS
Developer Guide

foxit

Faxit PDF SDK

~z
d

@ 8 8 =

5.2.2 Customize to hide a specific Panel

To hide a specific panel (See Figure 5-3, includes "Bookmarks", "Outline", "Annotations",

"Attachments" and "Digital Signatures" panels, just taps at the bottom toolbar (for iPhone) or

taps at the left top toolbar (for iPad) to find it), you only need to use the following API:

(void)setPanelHidden:(BOOL)isHidden type:(FSPanelType)type

83

Foxit PDF SDK for iOS
Developer Guide

Close Bookmarks

n = & & &

Attachments panel

Comments pa mLe\

Outline panel E|

Bookmarks panel

No bookmarks

Digital Signatures panel

t PDF SDK

Android/iOs

¢

PDF

vw.foxit.com

1

Figure 5-3

In this section, we only give an example to show you how to hide a specific panel through APIs in the
"complete_pdf viewer" (Objective-C) and "complete_pdf viewer_swift" (Swift) demos found in the
"samples" folder. Just take the "Outline" panel as an example, and for other panels, you only need to

change the FSPanelType. The corresponding relation between panels and FSPanelType are as

Panel FSPanelType

Bookmarks FSPanelTypeReadingBookmark
Outline FSPanelTypeOutline
Annotations FSPanelTypeAnnotation
Attachments FSPanelTypeAttachment

Digital Signatures

FSPanelTypeDigitalSignature

84

Open the demos in Xcode. Add the sample code to the "ViewController.m" (Objective-C) or

"TabsViewController.swift" (Swift) (after the code that initializes UlExtensionsManager).

Note: The built-in Ul is a bit different on iPhone and iPad. The following example is applicable for iPhone

and iPad, if the custom results on iPhone and iPad are similar, we only list the result on iPhone.

Foxit PDF SDK for iOS
Developer Guide

Example1: Hide the "Outline" panel. (For iPhone and iPad)

Objective-C:

[self.extensionsMgr.panelController setPanelHidden:true type:FSPanelTypeOutline];

Swift:

extensionsManager.panelController.setPanelHidden(true, type: .outline);

Before:
Close Qutline Edit
\ 0 = B ® &

> Introduction to Foxit PDF SDK

Feature Spotlight

> Introduction to POF

> Technical Support

After:
Close Bookmarks
n] = @ P

85

Foxit PDF SDK for iOS
Developer Guide

5.2.3 Customize to hide the Ul elements in the View setting bar

To hide the Ul elements in the View setting bar (See Figure 5-4, just taps [at the bottom toolbar
(for iphone) or tap icon at the top toolbar to select the View (for some iPads) to find it), you only

need to use the following API:

(void)setltem:(SettingltemType)itemType hidden:(BOOL)hidden;

HBEOR B AR RB

fox

Foxit PDF SDK

forAndroid/iOS

View Settings

Single Page Facing Cover Facing V
w*
he ° Por
Day

Page Color Night

= Continuous

Right to Left www. foxit.com

@' Fit Page 1

Figure 5-4

The value of the parameter "itemType" can be set as follows, which maps the items in the View

setting bar.
item itemType
Single page mode SINGLE
Facing mode DOUBLEPAGE
Cover Facing mode COVERPAGE
Day mode DAYMODE
Page Color PAGECOLOR
Night mode NIGHTMODE
Continuous Scrolling mode CONTINUOUS

86

Foxit PDF SDK for iOS
Developer Guide

Right to Left PAGERTL
Fit page mode FITPAGE
Fit width mode FITWIDTH
Reflow mode REFLOW
Crop mode CROPPAGE
Speak SPEECH
Auto Flip AUTOFLIP
Rotate View ROTATE
Pan and Zoom PANZOOM

In this section, we only take "Reflow" item as an example to show you how to hide the Ul elements in

the View setting bar through APIs in the "complete_pdf_viewer" (Objective-C) and

"complete_pdf viewer_swift" (Swift) demos found in the "samples" folder. For other Ul elements,

you only need to change the "itemType".

Open the demos in Xcode. Add the sample code to the "ViewController.m" (Objective-C) or

"TabsViewController.swift" (Swift) (after the code that initializes UlExtensionsManager).

Example1: Hide the "Reflow" item in the View setting bar. (For Phone and Tablet)

Objective-C:

[self.extensionsMgr.settingBar setltem:REFLOW hidden:YES];

Swift:

extensionsManager.settingBar.setltem(.REFLOW, hidden: true)

for iPhone:

Before:

87

Foxit PDF SDK for iOS
Developer Guide

View Setings
N N 4
Day Page Color Night Day Page Caler ight
w o
A Continuous = Continuous
Right to Left Right to Left
3 Fit Page o3+ Fit Page
O Fitwidth v O Fitwidth v
@ Reflow 9 cropMode
] crop Made £b Sspeak

for iPad:

Before: After:

BeB4o@undrB

[foxit

BerRroanlBRR

2, foxit
¢ Foxit PDF SDK
_férLAndroid/ios Foxit PDF SDK

forAndroid/iOS

~

PDF

www. foxit.com

www. foxit.com
.

88

Foxit PDF SDK for iOS
Developer Guide

5.2.4 Customize to hide the Ul elements in the More Menu view

To hide the Ul elements in the More Menu view (See Figure 5-5, just taps BB at the right top toolbar
to find it), you can use the following APIs listed in the Table 5-2.

Table 5-2
(void)setMoreViewltemHiddenWithGroup: Set the enabled state of group according to
(NSUInteger)groupTag hidden:(BOOL)isHidden "groupTag".
(void)setMoreViewltemHiddenWithGroup:
(NSUInteger)groupTag Set the enabled state of item according to
anditemTag:(NSUInteger)itemTag "groupTag" and "itemTag".

hidden:(BOOL)isHidden

(void) setindividualMenultemHiddenWithltemTag:
Set visible or invisible state for the individual

group.

(NSUInteger)itemTag
hidden: (BOOL)isHidden

Mg T 2 ¢ @l0O 9
(]
o
=
6‘&4'}5 jul
e, @%’“E : 0 s
6‘%‘?%9»05')[PDF SDK forAndroid/ius

Sample
POF - Apr 15,2024 - 122 KB

Protect >

Comments & Fields > V
"

E Save As PDF

% Reduce File Size

@ Print

v
<~ Flatten

www. foxit.com

1

D Screen Capture
@

Show Info

Figure 5-5

The values of the parameters "groupTag" and "itemTag" in the
setMoreViewltemHiddenWithGroup interface can be set as follows:

89

groupTag NSUinteger

TAG_GROUP_PROTECT 10
TAG_GROUP_COMMENT_FIELD 20
groupTag itemTag NSUinteger
TAG_ITEM_REDACTION 10
TAG_GROUP_PROTECT TAG_ITEM_PASSWORD 20
TAG_ITEM_CERTIFICATE 30
TAG_ITEM_IMPORTCOMMENT 40
TAG_ITEM_EXPORTCOMMENT 50
TAG_GROUP_COMMENT FIELD TAG_ITEM_SUMARIZECOMMENT 60
TAG_ITEM_RESETFORM 70
TAG_ITEM_IMPORTFORM 80
TAG_ITEM_EXPORTFORM 90

The value of the parameter "itemTag" in the setindividualMenultemHiddenWithitemTag

interface can be set as follows:

itemTag NSUlnteger
TAG_ITEM_SAVE_AS 110
TAG_ITEM_REDUCEFILESIZE 120
TAG_ITEM_WIRELESSPRINT 130
TAG_ITEM_FLATTEN 140
TAG_ITEM_SCREENCAPTURE 150

In this section, we only give three examples:

e Example1 and Example2 shows you how to hide a specific group or its item in the More
Menu view through APIs in the "complete_pdf _viewer" (Objective-C) and
"complete_pdf viewer_swift" (Swift) demos found in the "samples" folder. Just take the
group TAG_GROUP_PROTECT and the item TAG_ITEM_REDACTION as examples, and for
other groups and items, please refer to these examples and only need to change the

parameter value in the setMoreViewltemHiddenWithGroup interface.

e Example3 shows you how to hide the item which is an individual menu item in the More
Menu view through APIs. Just take the item TAG_ITEM_FLATTEN as an example, and for
other individual menu items, please refer to this example and only need to change the

parameter value in the setindividualMenultemHiddenWithltemTag interface.

90

Foxit PDF SDK for iOS
Developer Guide

Open the demos in Xcode. Add the sample code to the "ViewController.m" (Objective-C) or
"TabsViewController.swift" (Swift) (after the code that initializes UlExtensionsManager).

Note: The built-in Ul is a bit different on tablets and phones. The following examples are applicable for

phones and tablets, if the custom results on phones and tablets are similar, we only list the result on
phones.

Example1: Hide the group "TAG_GROUP_PROTECT" in the More Menu view. (For Phone and
Tablet)

Objective-C:

[self.extensionsMgr.more setMoreViewltemHiddenWithGroup:TAG_GROUP_PROTECT hidden:YES];

Swift:

extensionsManager.more.setMoreViewltemHiddenWithGroup(UInt(TAG_GROUP_PROTECT), hidden: true);

Before: After:

% sample
. POE - Apr 16,2024 - 122 KB
% Sample
Comments & Flelds > Comments & Flelds >

[saveas [saveas

TV Reduce File Size TV Reduce File Size

& print & Print

S Flatten S Flatten

10 Screen Capture 10 Screen Capture

@ Sshowinfo @ Sshowinfo

91

Foxit PDF SDK for iOS
Developer Guide

ExampIeZ: Hide the item "TAG_ITEM_REDACTION" in the More Menu view. (For Phone and
Tablet)
Objective-C:

[self.extensionsMgr.more setMoreViewltemHiddenWithGroup:TAG_GROUP_PROTECT
anditemTag:TAG_ITEM_REDACTION hidden:YES];

Swift:
extensionsManager.more.setMoreViewltemHiddenWithGroup(UInt(TAG_GROUP_PROTECT),
andltemTag:UInt(TAG_ITEM_REDACTION), hidden: true);

Before: After:

< Protect < Pratect
& File Encryption £, Trusted Certificates

B Trusted Certificates

92

Foxit PDF SDK for iOS
Developer Guide

Example3: Hide the individual menu item "TAG_ITEM_FLATTEN" in the More Menu view.
(For Phone and Tablet)

Objective-C:
[self.extensionsMgr.more setindividualMenultemHiddenWithitemTag:TAG_ITEM_FLATTEN hidden:YES];

Swift:
extensionsManager.more.setIndividualMenultemHiddenWithltemTag(UInt(TAG_ITEM_FLATTEN), hidden: true);

Before: After:

& sample
™ POF - Apr 16,2024 - 122 KB

% Sample
by PFOF - dar 15,2024 122 KB

Protect >

Comments & Fields > Protect >
] saveas Commants & Fields >
[Reduce File Size [Z] saveas

Reduce File Size

@ Print

O
5]

10 screen capture T sereen Gapuure
0]

Print

(D Sshowlnfo Show Infa

93

5.3 Customize Ul implementation through source code

In the previous sections, we have introduced how to customize the user interface through a
configuration file or APIs in detail. Those changes are in the context of the built-in Ul framework of
Foxit PDF SDK for iOS. If you do not want to use the ready-made Ul framework, you can redesign it
through modifying the source code of the Ul Extensions Component.

There is one thing to take note of. The source code of the Ul Extensions Component is written in
Objective-C, so you need to use Objective-C to modify the Ul layout. If you are a Swift developer and
not already familiar with Objective-C, you might only be able to customize the Ul appearance that

does not need writing code, such as icons and other Ul resources.
To customize the Ul implementation, you need to follow these steps:
First, add the following required files into your app.

e FoxitRDK.framework - The framework that includes the Foxit PDF SDK for iOS dynamic

library and associated header files. It can be found in the "libs" folder.

e uiextensions project - It is an open source library that contains some ready-to-use Ul module
implementations, which can help developers rapidly embed a fully functional PDF reader
into their iOS app. Of course, developers are not forced to use the default Ul, they can freely
customize and design the Ul for their specific apps through the "uiextensions" project. It can

be found in the "libs/uiextensions_src" folder.

Tip: The built-in Ul customization can be done in the uiextensions project, and then you can add
the new uiextensionsDynamic.framework generated by the modified uiextensions project to

your app instead of the whole uiextensions project.

Second, find the specific code or images related to the Ul that you want to customize in the

uiextensions project, then modify them based on your requirements.

Now, for your convenience, we will show you how to customize the Ul implementation in

"viewer_ctrl_demo" project found in the "samples" folder.
Ul Customization Example

Step 1: Add the uiextensions project into the demo.

94

Foxit PDF SDK for iOS
Developer Guide

Note: We will add the uiextensions project to the demo which is convenient for us to see the custom
results. The demo already includes FoxitRDK.framework, so we just need to add the uiextensions
project.

Load the "viewer_ctrl_demo" project in Xcode. Drag-and-drop "uiextensions.xcodeproj" found in
the "libs/uiextensions_src" of the download package into the "viewer_ctrl_demo" project as shown
in Figure 5-6.

m EH I QAo F D B3
v“a N uiextensions.xcodeproj
= it
=] viewer_ctrl_demo.entitlements

» . Frameworks
» Resource
> Source
>

N

Products

+ |G Filter OM

Figure 5-6

Then, it will pop up a dialog box which prompts you whether to save the project in a new workspace
as shown in Figure 5-7. Click Save.

Do you want to save this projectin a
new workspace?

You can only combine content with this project in

a workspace.

Figure 5-7

95

Foxit PDF SDK for iOS
Developer Guide

Save the workspace to the "samples" folder, and name "custom_viewer" as shown in Figure 5-8. Click

Save.

Save As: [custom_viewerl I

Tags:
Favorites

o Downloads

A\ Applications
[Desktop complete_pdf_vie function_demo swift test_files
wer

<
>
jol

@ Documents

iCloud
< iCloud Drive

Locations viewer_ctrl_demo

Tags

New Folder Cancel
Figure 5-8

Now, the workspace looks like the Figure 5-9.

a BT Q A O § D B
|> B uiextensionsl
v = viewer_ctrl_demo

2] viewer_ctrl_demo.entitlements

» . Frameworks
» — Resource

» Source

>

. Products

+ (& Filter ®

Figure 5-9

Congratulations! You have completed the first step.

96

Step 2: Find and modify the code or images related to the Ul that you want to customize.

Now, we will show you a simple example that changes one button’s icon in the search panel as

shown in Figure 5-10.

Tip: If you just want to change the icons of the Ul elements, you can do it in the
uiextensionsDynamic.framework directly instead of importing the source code of uiextensions project.

But the same is that you also need to find the icon's name.

10:32 = ==

= Q Foxit @ Ccancel

Introduction to ! PDF SDK

PDF SDK

Why Foxit PDF SDK for Andre

® [=] @

Figure 5-10

To replace the icon, we only need to find the place where stores the icon for this button, then use

another icon with the same name to replace it.

An iPhone Simulator will be used as an example to run the demo. In the uiextensions project, click
"uiextensionsDynamic -> Resource -> png -> Search.xcassets" as shown in Figure 5-11. It's easy to
find the image that we want to replace. The resource files are stored according to the features, so

you can locate the related code through the icon’s name.

97

Foxit PDF SDK for iOS
Developer Guide

ses D>

@ F3rOUNGALGN.PODSpEC
» _ FSFoundation
» © PublicHeaders

» 7 UlExtensions

¥~ uiextensionsDynamic
¥ © Resource

CropViewController.xib

. B
v

Annotationicons
prg

[FileType.xcassets
5 DocViewer.xcassets
[Comparison.xcassets
& Common.xcassets
[PanZoom.xcassets
[Annotation.xcassets
[Document.xcassets
[Panel.xcassets

[Property.xcassets
[ReadView.xcassets

& Reflow.xcassets

[SettingBar.xcassets
[Sign.xcassets
@ Speech.xcassets

iter

= B 2 QAo & D 8

FileManageListViewControl...

(B viewer_ctrl_demo) B8 iPhone 11 (14.0)

B

<

viewer_ctrl_demo: Ready | Taday at 4:17 PM

[search. &

m m

& viextensions } " uiextensionsDynamic) ©] Resource) ©
| saarch filter search_show_list
search_left_search

= | search_next
search_no_matches

= | search_previous
search_right_clear

earch

2| search

oM | + - 3 [

png) [l Search.xcassets) - search_show_list

Image

Any Appearance

Dark Appearance

Universal

Show Slicing

Figure 5-11

Right now, just replace "search_show_list.imageset" with your own icon in the

"libs\uiextensions_src\UIExtensions\Resource\png\Search.xcassets" folder. For example, we use the

"search.imageset" of the top search button to replace it.

After replacing, firstly build and run the uiextensionsDynamic_aggregate project as shown in Figure

5-12.

e e @ uiextensi...aggregate)| iPhone 11 (14.0) | viewer ctrl_demo; Ready | Taday at 4:25 PM A -+ B
i &
BETQASEDEHE L [uiextensions.xcodeproj ic]
¥ 1 uiextensions & uiextensions < >
@ FSFoundation.podspec
i3 % 1] Resource Tags Build Settings Build Rules
» * FSFoundation
» = PublicHeaders PROJECT +
- A I uiextensions
lo LT . » Dependencies (0 items)
» = uiextensionsDynamic TARGET:
» O Products {54 uiextensionsDyna... «
b = Framewats
» & viewer_ctrl_demo Shell |jbinjsh
TARGET_NAME=uiextensionsDynamic
LIB_NAME=uiextensionsDynamic
L1B_DIR=..
LIB_PATH_XCFRAMEWORK=${LIB_DIR}/${LIB_NAME}
.xcframework
L1B_PATH_FRAMEWORK=8{LIB_DIR}/${LIB_NAME}
.framework
LIB_PATH_RELEASE_IPHONEDS=S
{LIB_DIR}/Release-iphoneos/${LIB_NAME}
. framework
LIB_PATH_RELEASE_IPHONESIMULATOR=S
{LIB_DIR}/Release-iphonesinulatar/$
{LIB_NAME} . framework
RELEASE_MACCATALYST=$
{LIB_DIR}/Release-maccatalyst
LIB_PATH_RELEASE_MACCATALYST=$
{RELEASE_MACCATALYST}/${LIB_NAME} . framework
CLEAN=
if [| -n "SREBUILD_ALL" 1; then
echo "REBUILD_ALL Mot defined.®
+ oH + - @ else

Figure 5-12

Note: The uiextensions project can generate a universal ".a" library through building

uiextensions_aggregate, or generate a universal framework through building

98

uiextensionsDynamic_aggregate, which can be used for both simulator and iOS device. In this section,
we build uiextensionsDynamic_aggregate. The scripts used for generating the universal framework in

the uiextension project is shown in Figure 5-12.

The uiextensionsDynamic.framework in the "libs" folder of the download package will be
overwritten after building the uiextensionsDynamic_aggregate project successfully.

Then build and run the "viewer_ctrl_demo" project. After building successfully, try the search
feature and we can see that the icon of the bottom search button has changed as shown in Figure
5-13.

10:49 T .-

2= Q Foxit @ Cancel

Introduction to ! PDF SDK

PDF SDK

DF SDK for Android/i0S

Why Foxit PDF SDK for Android/ios is your thoice

© [Q] ®

Figure 5-13

This is just a simple example to show how to customize the Ul implementation. You can refer to it
and feel free to customize and design the Ul for your specific apps through the uiextensions project.

99

6 Working with SDK API

Foxit PDF SDK for iOS wrapped all of the features implementations into the Ul Extensions
Component. If you are interested in the detailed process of the features implementations, please go

through this section.

In this section, we will introduce a set of major features and list some examples to show you how to

implement the features using Foxit PDF SDK Core API.

6.1 Render

PDF rendering is realized through the Foxit renderer, a graphic engine that is used to render page to
a bitmap or a platform device context. Foxit PDF SDK provides APIs to set rendering options/flags,
for example set flag to decide whether to render form fields and signature, whether to draw image

anti-aliasing and path anti-aliasing. To do rendering, you can use the following APIs:

e Torender page and annotations, first use function - [FSRenderer setRenderContentFlags:] to
decide whether to render page and annotation both or not, and then use function -
[FSRenderer startRender:matrix:pause:] to do the rendering. Function - [FSRenderer
startQuickRender:matrix:pause:] can also be used to render page but only for thumbnail
purpose.

e Torender a single annotation, use function - [FSRenderer renderAnnot:matrix:].

e Torender on a bitmap, use function - [FSRenderer
startRenderBitmap:matrix:clip_rect:interpolation:pause:].

e Torender areflowed page, use function - [FSRenderer startRenderReflowPage:matrix:pause:] .

Widget annotation is always associated with form field and form control in Foxit PDF SDK. For how

to render widget annotations, here is a recommended flow:

e After loading a PDF page, first render the page and all annotations in this page (including
widget annotations).

e Then, if use FSFiller object to fill the form, the function - [FSFiller render:matrix:renderer:]
should be used to render the focused form control instead of the function - [FSRenderer

renderAnnot:matrix:].

Example:
100

file:///F:/GSDK_6_2/GSDK_6.2.1/foxitpdfsdk_6_2_1_win/doc/html/classfoxit_1_1common_1_1_renderer.html%23a4b763420b6b9ea03e170b6eba7bb9164

Foxit PDF SDK for iOS
Developer Guide

6.1.1 How to render a specified page to a bitmap

#import "ViewController.h"
#import <FoxitRDK/FSPDFViewControl.h>

-(FSBitmap*)renderPageToBitmap:(FSPDFPage*) pdfPage drawWidth:(int)drawPageWidth
drawHeight:(int)drawPageHeight
{
// If the page hasn't been parsed yet, throw an exception.
if(![pdfPage isParsed])
@throw [NSException exceptionWithName:NSGenericException reason:@"PDF Page should be parsed
first" userinfo:nil];

// Pepare matrix to render on the bitmap.
FSMatrix2D* matrix = [pdfPage getDisplayMatrix:0 top:0 width:drawPageWidth height:drawPageHeight
rotate:FSRotation0];
// Create a bitmap according to the required drawPageWidth and drawPageHeight.
FSBitmap* bitmap = [[FSBitmap alloc] initWithWidth:drawPageWidth height:drawPageHeight
format:FSBitmapDIBRgb];

// Fill the bitmap with white color.
[bitmap fillRect:0XFFFFFFFF rect:nil];
FSRenderer* renderer = [[FSRenderer alloc] initWithBitmap:bitmap is_rgb_order:YES];
// Set the render flag, both page content and annotation will be rendered.
[renderer setRenderContentFlags:FSRendererRenderPage | FSRendererRenderAnnot];
// Start to render the page progressively.
FSProgressive* progress = [renderer startRender:pdfPage matrix:matrix pause:nil];
if(progress) {

FSProgressiveState state = [progress resume];

while (state == FSProgressiveToBeContinued) {

state = [progress resume];
}
if(state I= FSProgressiveFinished)
return nil;

}

return bitmap;

101

Foxit PDF SDK for iOS
Developer Guide

6.1.2 How to render a specified page to a platform device context

#import "ViewController.h"
#import <FoxitRDK/FSPDFViewControl.h>

-(void)renderPageToContext:(FSPDFPage*) pdfPage context:(CGContextRef)context
{
// If the page hasn't been parsed yet, throw an exception.
if(![pdfPage isParsed])
@throw [NSException exceptionWithName:NSGenericException reason:@"PDF Page should be parsed

first" userinfo:nil];

// We set the width of drawing page to be equal to screen width, the drawing page height is calculated according to
the ratio of page height and width.

CGFloat scale = [UIScreen mainScreen].scale;

int drawPageWidth = (int)[[UIScreen mainScreen] bounds].size.width * scale;

float pageWidth = [pdfPage getWidth];

float pageHeight = [pdfPage getHeight];

int drawPageHeight = (int)drawPageWidth * (pageHeight/pageWidth) * scale;

// Erase the background of context with white color.
CGContextSaveGState(context);

CGContextSetRGBFillColor(context, 1.0, 1.0, 1.0, 1.0);

CGContextFillRect(context, CGRectMake(0, 0, drawPageWidth, drawPageHeight));

// Render to screen in the device coordinate, left:0, top:0, right:drawPageWidth, bottom:drawPageHeight.
FSMatrix2D* matrix = [pdfPage getDisplayMatrix:0 top:0 width:drawPageWidth height:drawPageHeight
rotate:FSRotationO];
FSRenderer* renderer = [[FSRenderer alloc] initWithContext:context device_type:FSRendererDeviceDisplay];
[renderer setRenderContentFlags:FSRendererRenderPage | FSRendererRenderAnnot];
// Start to render the page progressively.
FSProgressive* progress = [renderer startRender:pdfPage matrix:matrix pause:nil];
if(progress) {
FSProgressiveState state = [progress resume];
while (state == FSProgressiveToBeContinued) {

state = [progress resume];

102

CGContextRestoreGState(context);

6.2 Text Page

Foxit PDF SDK provides APIs to extract, select, search and retrieve text in PDF documents. PDF text
contents are stored in FSTextPage objects which are related to a specific page. FSTextPage class can
be used to retrieve information about text in a PDF page, such as single character, single word, text
content within specified character range or rectangle and so on. It also can be used to construct
objects of other text related classes to do more operations for text contents or access specified
information from text contents:

e Tosearch textin text contents of a PDF page, construct a FSTextSearch object with FSTextPage
object.

e To access text such like hypertext link, construct a FSPageTextLinks object with FSTextPage
object.

e To highlight the selected text on the PDF page, construct a FSTextPage object for calculating
text area by selection.

Example:

6.2.1 How to get the text area on a page by selection

#import "ViewController.h"
#import <FoxitRDK/FSPDFViewControl.h>

// Get the text area on a page by selection. The starting selection position and ending selection position are specified
by startPos and endPos.
-(NSArray<FSRectF*>*)getTextRectsBySelection:(FSPDFPage*)page startPos:(FSPointF*)startPos
endPos:(FSPointF*)endPos {
if(![page isParsed])
@throw [NSException exceptionWithName:NSGenericException reason:@"PDF Page should be parsed

first" userinfo:nil];

// Create a text page from the parsed PDF page.
FSTextPage* textPage = [[FSTextPage alloc] initWithPage:page flags:FSTextPageParseTextNormal];
if('textPage | | [textPage isEmpty])

return nil;

103

int startCharindex = [textPage getindexAtPos:startPos.x y:startPos.y tolerance:5];

int endCharindex = [textPage getIndexAtPos:endPos.x y:endPos.y tolerance:5];

// API getTextRectCount requires that start character index must be lower than or equal to end character index.
startCharindex = startCharindex<endCharIlndex?startCharindex:endCharlindex;

endCharlndex = endCharlndex>startCharindex?endCharlndex:startCharindex;

int count = [textPage getTextRectCount:startCharlndex count:endCharindex-startCharindex];

if(count)

{
NSMutableArray<FSRectF*>* array = [[NSMutableArray<FSRectF*> alloc] init];

for(int i=0; i<count; i++) {
FSRectF* rect = [textPage getTextRect:i];
if(Irect | | [rect isEmpty])
continue;
[array addObject:rect];
}

// The return rects are in PDF unit, if caller need to highlight the text rects on the screen, then these rects should
be converted in device unit first.
return array;

}

return nil;

6.3 Text Search

Foxit PDF SDK provides APIs to search text in a PDF document, a XFA document, a text page orin a

PDF annotation's appearance. It offers functions to do a text search and get the searching result:

e To specify the searching pattern and options, use functions - [FSTextSearch setPattern:], -
[FSTextSearch setStartPage:] (only useful for a text search in PDF document), - [FSTextSearch
setEndPage:] (only useful for a text search in PDF document) and - [FSTextSearch
setSearchFlags:].

e To do the searching, use function - [FSTextSearch findNext] or - [FSTextSearch findPrev].

e To get the searching result, use function - [FSTextSearch getMatchXXX].

Example:

6.3.1 How to search a text pattern in a PDF

#import "ViewController.h"

104

Foxit PDF SDK for iOS
Developer Guide

#import <FoxitRDK/FSPDFViewControl.h>

NSString *pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" of Type:@"pdf"];
FSPDFDoc *doc = [[FSPDFDoc alloc] initWithPath:pdfPath];

// Create a text search handler for searching in PDF document.
FSTextSearch *textSearch = [[FSTextSearch alloc] initWithDocument:doc cancel:nil
flags:FSTextPageParseTextNormal];
// Set the start page index which searching will begin. By default, end page will be the last page.
[textSearch setStartPage:0];
// Set the text to be searched.
[textSearch setPattern:@"foxit"];
// Set the search flags to be matching case and matching whole word.
[textSearch setSearchFlags:FSTextSearchSearchMatchCase | FSTextSearchSearchMatchWholeWord];
// Start to search from the start page to end.
while([textSearch findNext]) {
// If true, then we found a matched result.
// Get the found page index.
int pagelndx = [textSearch getMatchPagelndex];
// Get the start character index of the matched text on the found page.
int startCharlndex = [textSearch getMatchStartCharindex];
// Get the end character index of the matched text on the found page.
int endCharindex = [textSearch getMatchEndCharlndex];
// Get the rectangular region of the matched text on the found page.
FSRectFArray* matchRects = [textSearch getMatchRects];

6.4 Bookmark (Outline)

Foxit PDF SDK provides navigational tools called Bookmarks to allow users to quickly locate and link
their point of interest within a PDF document. PDF bookmark is also called outline, and each
bookmark contains a destination or actions to describe where it links to. It is a tree-structured
hierarchy, so function - [FSPDFDoc getRootBookmark] must be called first to get the root of the whole
bookmark tree before accessing to the bookmark tree. Here, “root bookmark” is an abstract object

which can only have some child bookmarks without next sibling bookmarks and any data (includes

105

Foxit PDF SDK for iOS
Developer Guide

bookmark data, destination data and action data). It cannot be shown on the application Ul since it

has no data. Therefore, a root bookmark can only call function - [FSBookmark getFirstChild].

After the root bookmark is retrieved, following functions can be called to access other bookmarks:

e To access the parent bookmark, use function - [FSBookmark getParent].

e To access the first child bookmark, use function - [FSBookmark getFirstChild].

e To access the next sibling bookmark, use function - [FSBookmark getNextSibling].
e Toinsert a new bookmark, use function - [FSBookmark insert:position:].

e To move a bookmark, use function - [FSBookmark moveTo:position:].

Example:

6.4.1 How to travel the bookmarks of a PDF in depth first order

#import "ViewController.h"
#import <FoxitRDK/FSPDFViewControl.h>

- (void)DepthFistTravelBookmarkTree:(FSBookmark*)bookmark document:(FSPDFDoc*)doc {
if(lbookmark | | [bookmark isEmpty])
return;
[self DepthFistTravelBookmarkTree:[bookmark getFirstChild] document:doc];
while(true) {
// Get bookmark title.
NSString* title = [bookmark getTitle];
FSDestination* dest = [bookmark getDestination];
if(dest && ![dest isEmpty])
{
float left,right,top,bottom;
float zoom;
int pagelndex = [dest getPagelndex:doc];
// left, right, top, bottom, zoom are only meaningful with some special zoom modes.
FSDestinationZoomMode mode = [dest getZoomMode];
switch (mode) {
case FSDestinationZoomXYZ:
left = [dest getLeft];
top = [dest getTop];
zoom = [dest getZoomFactorT];
break;

case FSDestinationZoomFitPage:

106

file:///F:/GSDK_6_2/GSDK_6.2.1/foxitpdfsdk_6_2_1_win_dotnet/doc/html/classfoxit_1_1pdf_1_1_bookmark.html%23a309b1b9fe1eaaa273ddef2f2071819b2
file:///F:/GSDK_6_2/GSDK_6.2.1/foxitpdfsdk_6_2_1_win_dotnet/doc/html/classfoxit_1_1pdf_1_1_bookmark.html%23a583fb57b5d0fd1c494b7ee28be881096

break;

case FSDestinationZoomFitHorz:
top = [dest getTop];
break;

case FSDestinationZoomFitVert:
left = [dest getLeft];
break;

case FSDestinationZoomFitRect:
left = [dest getLeft];
bottom = [dest getBottom];
right = [dest getRight];
top = [dest getTop];
break;

case FSDestinationZoomFitBBox:
break;

case FSDestinationZoomFitBHorz:
top = [dest getTop];
break;

case FSDestinationZoomFitBVert:
left = [dest getLeft];
break;

default:
break;

}
bookmark = [bookmark getNextSibling];
if(bookmark == nil | | [bookmark isEmpty])
break;
[self DepthFistTravelBookmarkTree:[bookmark getFirstChild] document:doc];

6.5 Reading Bookmark

Reading bookmark is not a PDF bookmark, in other words, it is not PDF outlines. It is the bookmark
in applicable level. It is stored in the metadata (XML format) of catalog. It allows user to add or
remove a reading bookmark according to their reading preferences and navigate to one PDF page
easily by selecting one reading bookmark.

107

Foxit PDF SDK for iOS
Developer Guide

In order to retrieve the reading bookmark, function - [FSPDFDoc getReadingBookmarkCount] could be
called to count the reading bookmarks, and function - [FSPDFDoc getReadingBookmark:] could be

called to get a reading bookmark by index.

This class offers several functions to get/set properties of reading bookmarks, such as title,

destination page index and creation/modified date time.
Example:

6.5.1 How to add a custom reading bookmark and enumerate all the reading

bookmarks

#import "ViewController.h"
#import <FoxitRDK/FSPDFViewControl.h>

// Add a new reading bookmark to pdf document, the returned bookmark stores the title and the page index.
- (FSReadingBookmark*)addReadingBookmark:(FSPDFDoc*)pdfDoc title:(NSString*)title
pagelndex:(int)pagelndex {

int count = [pdfDoc getReadingBookmarkCount];

return [pdfDoc insertReadingBookmark:count title:title dest_page_index:pagelndex];

// Enumerate all the reading bookmarks from the pdf document.
- (void)getReadingBookmark:(FSPDFDoc*) pdfDoc {
int count = [pdfDoc getReadingBookmarkCount];
for(int i=0; i<count; i++) {
FSReadingBookmark* bm = [pdfDoc getReadingBookmark:i];
if([lom isEmpty]) continue;
// Get bookmark title.
NSString* title = [bm getTitle];
// Get the page index which associated with the bookmark.
int pagelndex = [bm getPagelndex];
// Get the creation date of the bookmark.
FSDateTime* creationDate = [bm getDateTime:YES];
// Get the modlification date of the bookmark.
FSDateTime* modificationDate = [bm getDateTime:NO]J;

108

6.6 Attachment

In Foxit PDF SDK, attachments are only referred to attachments of documents rather than file
attachment annotation, which allow whole files to be encapsulated in a document, much like email
attachments. Foxit PDF SDK provides applications APIs to access attachments such as loading
attachments, getting attachments, inserting/removing attachments, and accessing properties of

attachments.

Example:

6.6.1 How to embed a specified file to a PDF document

#import "ViewController.h"
#import <FoxitRDK/FSPDFViewControl.h>

NSString* filePath = @"/xxx/fileToBeEmbedded.xxx";
FSPDFNameTree* nameTree = [[FSPDFNameTree alloc] initWithDocument:self.fspdfdoc
type:FSPDFNameTreeEmbeddedFiles];
FSAttachments* attachments = [[FSAttachments alloc] initWithDoc:self.fspdfdoc nametree:nameTree];
FSFileSpec* fileSpec = [[FSFileSpec alloc] initWithDocument:self.fspdfdoc];
[fileSpec setFileName:[filePath lastPathComponent]];
if(![fileSpec embed:filePath])
return;

[attachments addEmbeddedFile:[filePath lastPathComponent] file_spec:fileSpec];

6.6.2 How to export the embedded attachment file from a PDF and save it as a

single file

#import "ViewController.h"
#import <FoxitRDK/FSPDFViewControl.h>

// Extract the embedded attachment file.
int count = [attachments getCount];
for(int i=0; i<count; i++) {
NSString* key = [attachments getKey:il;
if(key) {
FSFileSpec* fileSpec = [attachments getEmbeddedFile:key];

109

NSString* exportedFile = [@"/somewhere/" stringByAppendingString: [fileSpec getFileName]];
if(fileSpec && ![fileSpec isEmpty]) {
fileSpec exportToFile:exportedFile];

6.7 Annotation

An annotation associates an object such as note, line, and highlight with a location on a page of a
PDF document. PDF includes a wide variety of standard annotation types as listed in Foxit PDF SDK
supports most annotation types defined in PDF Reference. Foxit PDF SDK provides APIs of

annotation creation, properties access and modification, appearance setting and drawing.

Table 6-1. Among these annotation types, many of them are defined as markup annotations for they
are used primarily to mark up PDF documents. The 'Markup' column in Foxit PDF SDK supports most
annotation types defined in PDF Reference. Foxit PDF SDK provides APIs of annotation creation,

properties access and modification, appearance setting and drawing.
Table 6-1 shows whether an annotation is a markup annotation.

Foxit PDF SDK supports most annotation types defined in PDF Reference. Foxit PDF SDK provides

APIs of annotation creation, properties access and modification, appearance setting and drawing.

Table 6-1
Annotation type Description | Markup SUbI;P;JI;t;d
Text(Note) Text annotation Yes Yes
Link Link Annotation No Yes
::'Ir;sz\(/e\;(rtiter/TextBox/CaIIout) Free text annotation Yes Yes
Line Line annotation Yes Yes
Square Square annotation Yes Yes
Circle Circle annotation Yes Yes
Polygon Polygon annotation Yes Yes
PolyLine PolyLine annotation Yes Yes
Highlight Highlight annotation Yes Yes
Underline Underline annotation Yes Yes
Squiggly Squiggly annotation Yes Yes

110

StrikeOut StrikeOut annotation Yes Yes
Stamp Stamp annotation Yes Yes
Caret Caret annotation Yes Yes
Ink(pencil) Ink annotation Yes Yes
Popup Popup annotation No Yes
File Attachment FileAttachment annotation Yes Yes
Sound Sound annotation Yes No
Movie Movie annotation No No
Widget* Widget annotation No Yes
Screen Screen annotation No Yes
PrinterMark PrinterMark annotation No No
TrapNet Trap network annotation No No
Watermark* Watermark annotation No No
3D 3D annotation No No
Redact Redact annotation Yes Yes

Note: Foxit PDF SDK supports a customized annotation type called PSI (pressure sensitive ink)
annotation that is not described in PDF reference. Usually, PSl is for handwriting features and
Foxit PDF SDK treats it as PSI annotation so that it can be handled by other PDF products.

Example:

6.7.1 How to add annotations to a PDF page

#import "ViewController.h"
#import <FoxitRDK/FSPDFViewControl.h>

NSString *pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" of Type:@"pdf'"];
FSPDFDoc *doc = [[FSPDFDoc alloc] initWithPath:pdfPath];
FSPDFPage *pdfPage = [doc getPage:0];
// Add text annot.
FSRectF *rect = [[FSRectF alloc] initWithLeft1:100 bottom1:100 right1:120 top1:120];
FSNote *note = [[FSNote alloc] initWithAnnot:[pdfPage addAnnot:FSAnnotNote rect:rect]];
if (Inote | | [note isEmpty]) {
return;
}
[note setlconName:@"Comment"];
// Set color to blue.
[note setBorderColor:0xff0000ff];
111

Foxit PDF SDK for iOS
Developer Guide

[note setContent:@"This is the note comment, write any content here."];

[note resetAppearanceStream];

// The following code demonstrates how to add hightlight annotation on the searched text.
FSTextSearch *textSearch = [[FSTextSearch alloc] initWithDocument:doc cancel:nil
flags:FSTextPageParseTextNormal];
if (ltextSearch | | [textSearch isEmpty]) {
return;
}
// Suppose that the text for highlighting is "foxit".
[textSearch setPattern:@"foxit"];
BOOL bMatched = [textSearch findNext];
if (bMatched) {
FSRectFArray *rects = [textSearch getMatchRects];
int rectCount = [rects getSize];
// Fill the quadpoints array according to the text rects of matched result.
FSQuadPointsArray* arrayOfQuadPoints = [[FSQuadPointsArray alloc] init];
for (int i =0; i < rectCount; i++) {
FSRectF *rect = [rects getAt:i];
FSQuadPoints *quadPoints = [[FSQuadPoints alloc] init];
FSPointF *point = [[FSPointF alloc] init];
[point set:[rect getLeft] y:[rect getTop]l;
[quadPoints setFirst:point];
[point set:[rect getRight] y:[rect getTop]l;

[quadPoints setSecond:point];

[point set:[rect getLeft] y:[rect getBottom]];
[quadPoints setThird:point];
[point set:[rect getRight] y:[rect getBottom]];
[quadPoints setFourth:point];
[arrayOfQuadPoints add:quadPoints];
}
//Just set an empty rect to markup annotation, the annotation rect will be calculated according to the quadpoints
that set to it later.
FSRectF *rect = [[FSRectF alloc] initWithLeft1:0 bottom1:0 right1:0 top1:0];
FSTextMarkup *textMarkup = [[FSTextMarkup alloc] initWithAnnot:[pdfPage addAnnot:FSAnnotHighlight
rect:rect]];
// Set the quadpoints to this markup annot.
[textMarkup setQuadPoints:arrayOfQuadPoints];

112

// set to red.

[textMarkup setBorderColor:0xffff0000];
// set to thirty-percent opacity.
[textMarkup setOpacity:0.3f];

// Generate the appearance.

[textMarkup resetAppearanceStream];

6.7.2 How to delete annotations in a PDF page

#import "ViewController.h"
#import <FoxitRDK/FSPDFViewControl.h>

NSString *pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" of Type:@"pdf'"];
FSPDFDoc *doc = [[FSPDFDoc alloc] initWithPath:pdfPath];
FSPDFPage *pdfPage = [doc getPage:0];
// Remove an annot by index.
FSAnnot* annot = [pdfPage getAnnot:0];
if(lannot | | [annot isEmpty])
return;
// Remove the first annot,so the second annot will become first.

[pdfPage removeAnnot:annot];

6.7.3 How to register listeners to receive annotation events

Annotation event listeners should always be registered in advance before receiving the annotation

events. See the following code snippet.

#import "UlExtensionsManager.h"

@interface RegisterLisntener : NSObject < [AnnotEventListener>

@end

@implementation RegisterLisntener

#pragma mark <IAnnotEventListener>

113

Foxit PDF SDK for iOS
Developer Guide

6.8 Form

Form (AcroForm) is a collection of fields for gathering information interactively from the user. Foxit
PDF SDK provides APIs to view and edit form field programmatically. Form fields are commonly used
in PDF documents to gather data. The FSForm class offers functions to retrieve form fields or form
controls, import/export form data and other features, for example:

e Toretrieve form fields, please use functions - [FSForm getFieldCount:] and - [FSForm
getField-filter:].

114

Foxit PDF SDK for iOS
Developer Guide

e To retrieve form controls from a PDF page, please use functions - [FSForm getControlCount:]
and - [FSForm getControl:index].

e Toimport form data from an XML file, please use function - [FSForm importFromXML:]; to
export form data to an XML file, please use function - [FSForm
exportToXML:field_array:is_include:].

e Toretrieve form filler object, please use function - [FSForm getFormfFiller].

To import form data from a FDF/XFDF file or export such data to a FDF/XFDF file, please refer to
functions - [FSPDFDoc importFromFDF:types:page_range:] and - [FSPDFDoc
exportToFDF:types:page_range:].

Example:

6.8.1 How to import and export form data from or to a XML file

#import "ViewController.h"
#import <FoxitRDK/FSPDFViewControl.h>

NSString *pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" of Type:@"pdf"];
FSPDFDoc *doc = [[FSPDFDoc alloc] initWithPath:pdfPath];

// Check if the document has a form.
BOOL hasForm = [doc hasForm];
if(hasForm) {
// Create a form object from document.
FSForm™* form = [[FSForm alloc] initWithDocument:doc];
// Export the form data to a XML file.
[form exportToXML:@"/somewhere/export.xml"];
// Or import the form data from a XML file.

[form importFromXML:@"/somewhere/export.xml"];

6.9 Security

Foxit PDF SDK provides a range of encryption and decryption functions to meet different level of
document security protection. Users can use regular password encryption and certificate-driven
encryption, or using their own security handler for custom security implementation.

Example:

115

6.9.1 How to encrypt a PDF file with password

#import "ViewController.h"
#import <FoxitRDK/FSPDFViewControl.h>

// Encrypt the source pdf document with specified owner password and user password, the encrypted PDF will be
saved to the path specified by parameter savePath.
- (BOOL) encryptPDF:(FSPDFDoc*) pdfDoc ownerPassword:(NSString*)ownerPassword
userPassword:(NSString*)userPassword savedPath:(NSString*)savedPath
{
if(lpdfDoc | | (lownerPassword && !userPassword) | | !savedPath)
return NO;

// The encryption setting data. Whether to encrypt meta data: YES, User permission: modify,assemble,fill form.
Cipher algorithm: AES 128.

FSStdEncryptData* encryptData = [[FSStdEncryptData alloc] initWithls_encrypt_metadata:YES
user_permissions:(FSPDFDocPermModify | FSPDFDocPermAssemble | FSPDFDocPermFillForm)
cipher:FSSecurityHandlerCipherAES key_length:16];

FSStdSecurityHandler * stdSecurity = [[FSStdSecurityHandler alloc] init];

if(![stdSecurity initialize:encryptData user_password:userPassword owner_password:ownerPassword])

return NO;

[pdfDoc setSecurityHandler:stdSecurity];

if(![pdfDoc saveAs:savedPath save_flags:FSPDFDocSaveFlagNormal])

return NO;
return YES;

6.10 Signature

PDF Signature can be used to create and sign digital signatures for PDF documents, which protects
the security of documents' contents and avoids it to be tampered maliciously. It can let the receiver
make sure that the document is released by the signer and the contents of the document are
complete and unchanged. Foxit PDF SDK provides APIs to create digital signature, verify the validity
of signature, delete existing digital signature, get and set properties of digital signature, display

signature and customize the appearance of the signature form fields.

Note: Foxit PDF SDK provides default Signature callbacks which supports the following two types of

signature filter and subfilter:

(1) filter: Adobe.PPKLite subfilter: adbe.pkcs7.detached
116

Foxit PDF SDK for iOS
Developer Guide

(2) filter: Adobe.PPKLite subfilter: adbe.pkcs7.shal

If you use one of the above signature filter and subfilter, you can sign a PDF document and verify the validity

of signature by default without needing to register a custom callback.

Example:

6.10.1 How to sign a PDF document and verify the signature

#import "ViewController.h"
#import <FoxitRDK/FSPDFViewControl.h>

- (void)addNewSignatureAndSign:(FSPDFPage*)page rect:(FSRectF*)rect {

// Add a new signature on the specified page rect.

FSSignature* signature = [page addSignature:rect];

// Set the appearance flags, if the specified flag is on, then the associated key will be displayed on the signature
appearance.

[signature setAppearanceFlags:FSSignatureAPFlagLabel | FSSignatureAPFlagDN | FSSignatureAPFlagText |

FSSignatureAPFlaglLocation | FSSignatureAPFlagReason | FSSignatureAPFlagSignerT];

// Set signer.

[signature setKeyValue:FSSignatureKeyNameSigner value:@"Foxit"];

// Set location.

[signature setKeyValue:FSSignatureKeyNamelocation value:@"AnyWhere"];

// Set reason.

[signature setKeyValue:FSSignatureKeyNameReason value:@"AnyReason"];

// Set contact info.

[signature setKeyValue:FSSignatureKeyNameContactinfo value:@"AnyInfo"];

// Set domain name.

[signature setKeyValue:FSSignatureKeyNameDN value:@"AnyDN"];

// Set description.

[signature setKeyValue:FSSignatureKeyNameText value:@"AnyContent"];

// Filter "Adobe.PPKLite" is supported by default.

[signature setFilter:@"Adobe.PPKLite"];

// SubFilter "adbe.pkcs7.shal" or "adbe.pkcs7.detached" are supported by default.

[signature setSubFilter:@"adbe.pkcs7.detached"];

// The input PKCS#12 format certificate, which contains the public and private keys.
NSString* certPath = @"/somewhere/cert.pfx";

// Password for that certificate.

117

Foxit PDF SDK for iOS
Developer Guide

NSString* certPassword = @"123";
NSString* signedPDFPath = @"/somewhere/signed.pdf";
// Start to sign the signature, if everything goes well, the signed PDF will be saved to the path specified by
"save_path".
FSProgressive* progress = [signature startSign:certPath cert_password:certPassword
digest_algorithm:FSSignatureDigestSHA1 save_path:signedPDFPath client_data:nil pause:nil];
if(progress) {
FSProgressiveState state = [progress resumelj;
while(state == FSProgressiveToBeContinued)
state = [progress resume];
if(state I= FSProgressiveFinished)

return;

// Get the signatures from the signed PDF document, then verify them all.
FSPDFDoc* pdfDoc = [[FSPDFDoc alloc] initWithPath:signedPDFPath];
FSErrorCode err = [pdfDoc load:nil];
if(err = FSErrSuccess) return;
int count = [pdfDoc getSignatureCount];
for(int i=0; i<count; i++) {
FSSignature* signature = [pdfDoc getSignature:i];
if(signature) {
FSProgressive *progress = [signature startVerify:nil pause:nil];
if (progress != nil) {
FSProgressiveState state = [progress resume];
while (FSProgressiveToBeContinued == state) {
state = [progress resume];
}
if(state I= FSProgressiveFinished)
continue;
}
int verifiedState = [signature getState];
if(verifiedState & FSSignatureStateVerifyValid)
NSLog(@"Signature %d is valid.", i);

118

Foxit PDF SDK for iOS
Developer Guide

6.10.2 How to set customized time information for signature

The function setSignTime currently doesn't allow changing data format. But we can resolve it by
passing the date string to the signature dictionary. See the following code snippet.

Foxit PDF SDK for iOS
Developer Guide

120

7 Creating a Custom Tool

With Foxit PDF SDK for iOS, creating a custom tool is a simple process. There are several tools
implemented in the Ul Extensions Component already. These tools can be used as a base for
developers to build upon or use as a reference to create a new tool. In order to create your own tool
quickly, we suggest you take a look at the uiextensions project found in the "libs/uiextensions_src"

folder.

To create a new tool, the most important step is to declare a class that implements the

"IToolHandler" interface.

In this section, we will make a Regional Screenshot Tool to show how to create a custom tool with
Foxit PDF SDK for iOS. This tool can help the users who only want to select an area in a PDF page to

capture, and then save it as an image. Now, let's do it.

7.1 Create a Regional Screenshot Tool in Objective-C

For convenience, we will build this tool based on the "viewer_ctrl_demo" project found in the

"samples" folder. Steps required for implementing this tool are as follows:

e Create a class named ScreenCaptureToolHandler that implements the "IToolHandler"

interface.
¢ Handle onPageViewLongPress and onDraw events.

e Instantiate a ScreenCaptureToolHandler object, and then register it to the

UlExtensionsManager.

e Setthe ScreenCaptureToolHandler object as the current tool handler.

Step 1: Create a class named ScreenCaptureToolHandler that implements the "IToolHandler"

interface.

a) Load the "viewer_ctrl_demo" project in Xcode. Create a class named
"ScreenCaptureToolHandler" in the "Source" folder, and create the corresponding header
file.

b) Letthe ScreenCaptureToolHandler class implement the IToolHandler interface as follows:

121

Foxit PDF SDK for iOS
Developer Guide

@interface ScreenCaptureToolHandler : NSObject<IToolHandler>

Step 2: Handle onPageViewLongPress and onDraw events.

Update ScreenCaptureToolHandler.h as follows:

#import <Foundation/Foundation.h>

#import <FoxitRDK/FSPDFViewControl.h>

#import <uiextensionsDynamic/UlExtensionsManager.h>
@protocol IToolHandler;

@class TaskServer;

@interface ScreenCaptureToolHandler : NSObject<IToolHandler>

- (instancetype)initWithUIExtensionsManager:(UlExtensionsManager*)extensionsManager
taskServer:(TaskServer*)taskServer;
@end

Update ScreenCaptureToolHandler.m as follows:

#import "ScreenCaptureToolHandler.h"
#import <ImagelO/ImagelO.h>

#import <ImagelO/CGImageDestination.h>
#import <MobileCoreServices/UTCoreTypes.h>

@interface ScreenCaptureToolHandler ()
@end

@implementation ScreenCaptureToolHandler {
UlExtensionsManager* _extensionsManager;
FSPDFViewCtrl* _pdfViewCtrl;

TaskServer* _taskServer;

CGPoint startPoint;
CGPoint endPoint;

}
@synthesize type;

- (instancetype)initWithUIExtensionsManager:(UlExtensionsManager*)extensionsManager
taskServer:(TaskServer*)taskServer
{
self = [super init];
if (self) {
_extensionsManager = extensionsManager;
_pdfViewCtrl = extensionsManager.pdfViewCtrl;
_taskServer = taskServer;

}

122

Foxit PDF SDK for iOS
Developer Guide

return self;

}

-(NSString*)getName
{

return @"";

}

-(BOOL)isEnabled

{
return YES;

}

-(void)onActivate

{

}

-(void)onDeactivate

{

}

// Save the image to a specified path.
- (void)saveJPGImage:(CGlmageRef)imageRef path:(NSString *)path
{
NSURL *fileURL = [NSURL fileURLWithPath:path];
CGImageDestinationRef dr = CGImageDestinationCreateWithURL((__bridge CFURLRef)fileURL, kUTTypeJPEG,
1, NULL);

CGImageDestinationAddimage(dr, imageRef, NULL);
CGImageDestinationFinalize(dr);

CFRelease(dr);
}

// Handle the PageView Gesture and Touch event
- (BOOL)onPageViewLongPress:(int)pagelndex recognizer:(UlLongPressGestureRecognizer *)recognizer
{
if (recognizer.state == UlGestureRecognizerStateBegan)
{
startPoint = [recognizer locationInView:[_pdfViewCtr| getPageView:pagelndex]];
endPoint = startPoint;

}

else if (recognizer.state == UlGestureRecognizerStateChanged)

{

endPoint = [recognizer locationInView:[_pdfViewCtr| getPageView:pagelndex]];

// Refresh the page view, then the onDraw event will be triggered.
[_pdfViewCtrl| refresh:pagelndex];
123

Foxit PDF SDK for iOS
Developer Guide

}
else if (recognizer.state == UlGestureRecognizerStateEnded | | recognizer.state ==
UlGestureRecognizerStateCancelled)
{
/1 Get the size of the Rect.
CGSize size = {fabs(endPoint.x-startPoint.x), fabs(endPoint.y-startPoint.y)};
CGPoint origin = {startPoint.x<endPoint.x?startPoint.x:endPoint.x,
startPoint.y<endPoint.y?startPoint.y:endPoint.y};
// Get the Rect.
CGRect rect = {origin, size};

int newDibWidth = rect.size.width;
int newDibHeight = rect.size.height;
if (newDibWidth <1 | | newDibHeight < 1)
{
return YES;
}

UlView* pageView = [_pdfViewCtr| getPageView:pagelndex];
CGRect bound = pageView.bounds;

// Create a bitmap with the size of the selected area.

int imgSize = newDibWidth*newDibHeight*4;

void* pBuff = malloc(imgSize);

NSData* buff = [NSData dataWithBytes:pBuff length:imgSize];

FSBitmap* fsbitmap = [[FSBitmap alloc] initWithWidth:newDibWidth height:newDibHeight
format:FSBitmapDIBArgb buffer: buff pitch:newDibWidth*4];

[fsbitmap fillRect:0XFFFFFFFF rect:nil];

FSRenderer* fsrenderer = [[FSRenderer alloc] initWithBitmap:fsbitmap is_rgb_order:YES];

FSPDFPage* page = [_pdfViewCtrl.currentDoc getPage:pagelndex];

// Calculate the display matrix.
FSMatrix2D* fsmatrix = [page getDisplayMatrix: -rect.origin.x top:-rect.origin.y width:bound.size.width
height:bound.size.height rotate:0];

// Set the render content, then start to render the selected area to the bitmap.
[fsrenderer setRenderContentFlags:FSRendererRenderPage | FSRendererRenderAnnot];
FSProgressive *progressive = [fsrenderer startRender:page matrix:fsmatrix pause:nil];
if (progressive) {
while (true) {
if ([progressive resume] != FSProgressiveToBeContinued) {
break;
}
}
}

// Convert FSBitmap to CGlmage.
CGDataProviderRef provider = CGDataProviderCreateWithData(NULL, buff.bytes, imgSize, nil);
CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
CGBitmaplInfo bitmapInfo = kCGBitmapByteOrderDefault | kCGImageAlphalast;
124

Foxit PDF SDK for iOS
Developer Guide

CGImageRef image = CGImageCreate(newDibWidth,newDibHeight, 8, 32, newDibWidth * 4,
colorSpace, bitmaplinfo,
provider, NULL, YES, kCGRenderingIntentDefault);

// Save the image to a specified path.
NSString* jpgPath = @"/Users/Foxit/Desktop/ScreenCapture.jpg";
[self save]PGImage:image path:jpgPath];

UlAlertView *alert = [[UIAlertView alloc]initWithTitle:@""
message:@" The selected area was saved as a JPG stored in the
/Users/Foxit/Desktop/ScreenCapture.jpg" delegate:nil cancelButtonTitle:NSLocalizedString(@"OK", @"OK")
otherButtonTitles:nil];
[alert show];

return YES;
}
return YES;
}

// Handle the drawing event.
-(void)onDraw:(int)pagelndex inContext:(CGContextRef)context
{
if (_extensionsManager.currentToolHandler != self) {
return;

}

CGContextSetLineWidth(context, 2);

CGContextSetLineCap(context, kCGLineCapSquare);

UlColor *color = [UIColor redColor];

CGContextSetStrokeColorWithColor(context, [color CGColor]);

CGPoint points[] = {startPoint,CGPointMake(endPoint.x, startPoint.y),endPoint,CGPointMake(startPoint.x,
endPoint.y)};

CGContextAddLines(context,points,4);

CGContextClosePath(context);

CGContextStrokePath(context);
}

- (BOOL)onPageViewTap:(int)pagelndex recognizer:(UITapGestureRecognizer *)recognizer

{

return NO;

}

- (BOOL)onPageViewPan:(int)pagelndex recognizer:(UIPanGestureRecognizer *)recognizer

{

return NO;

}

- (BOOL)onPageViewShouldBegin:(int)pagelndex recognizer:(UlGestureRecognizer *)gestureRecognizer
{
125

Foxit PDF SDK for iOS
Developer Guide

if (_extensionsManager.currentToolHandler != self) {
return NO;

}
return YES;

}

- (BOOL)onPageViewTouchesBegan:(int)pagelndex touches:(NSSet*)touches withEvent:(UIEvent*)event
{

return NO;

}

- (BOOL)onPageViewTouchesMoved:(int)pagelndex touches:(NSSet *)touches withEvent:(UIEvent *)event
{

return NO;

}

- (BOOL)onPageViewTouchesEnded:(int)pagelndex touches:(NSSet *)touches withEvent:(UIEvent *)event
{

return NO;

}
- (BOOL)onPageViewTouchesCancelled:(int)pagelndex touches:(NSSet *)touches withEvent:(UIEvent *)event
{

return NO;

}

@end

Note In the above code, you should specify an existing path to save the image. Here, the path is

"@"/Users/Foxit/Desktop/ScreenCapture.jpg"”, please replace it with a valid path.

Step 3: In ViewController.m, instantiate a ScreenCaptureToolHandler object and then register it

to the UlExtensionsManager.

#import "ScreenCaptureToolHandler.h"

@property (nonatomic, strong) ScreenCaptureToolHandler* screenCaptureToolHandler;

self.screenCaptureToolHandler = [[ScreenCaptureToolHandler alloc] initWithUIExtensionsManager:
self.extensionsManager taskServer:nil];
[self.extensionsManager registerToolHandler:self.screenCaptureToolHandler];

Step 4: In ViewController.m, set the ScreenCaptureToolHandler object as the current tool

handler.

Register the Doc event listener:

126

Foxit PDF SDK for iOS
Developer Guide

@interface ViewController () <ISearchEventListener,UlExtensionsManagerDelegate, IDocEventListener>

[self.pdfViewCtrl registerDocEventListener:self];

Set the current tool handler in the onDocOpened function:

- (void)onDocOpened:(FSPDFDoc *)document error:(int)error {

[self.extensionsManager setCurrentToolHandler:self.screenCaptureToolHandler];

Now, we have really finished creating a custom tool in Objective-C. Then, build and run the demo.
An iPhone Simulator will be used as an example to run the project. After building the demo
successfully, long press and select a rectangular area, and then a message box will be popped up as

shown in Figure 7-1. It shows where the image (selected area) was saved to.

11 - T B

£
x 00:@
el 05
2%

(=)
‘b(The selected area was saved as a JPG
stored in the /Users/Foxit/Desktop/
ScreenCapture.jpg

OK

v
- ‘b%ﬂg
PDF 2
%

.

Figure 7-1

In order to verify whether the tool captures the selected area successfully, we need to find the

screenshot. Go to "desktop", we can see the image as shown in Figure 7-2.
127

Figure 7-2

As you can see we have successfully created a Regional Screenshot Tool in Objective-C. This is just
an example to show how to create a custom tool with Foxit PDF SDK for iOS. You can refer to it or

our demos to develop the tools you want.

7.2 Create a Regional Screenshot Tool in Swift

For convenience, we will build this tool based on the "viewer_ctrl_demo_swift" project found in the

"samples\swift" folder. Steps required for implementing this tool are as follows:

e Create a class named ScreenCaptureToolHandler that implements the "IToolHandler"

interface.
¢ Handle onPageViewLongPress and onDraw events.

e Instantiate a ScreenCaptureToolHandler object, and then register it to the extensions

manager.

e Setthe ScreenCaptureToolHandler object as the current tool handler.

Step 1: Create a class named ScreenCaptureToolHandler that implements the "IToolHandler"

interface.

a) Load the "viewer_ctrl_demo_swift" project in Xcode. Create a class named

"ScreenCaptureToolHandler" in the "Source" folder.

128

b) Letthe ScreenCaptureToolHandler class implement the IToolHandler interface as follows:

class ScreenCaptureToolHandler: NSObject, IToolHandler {}
Step 2: Handle onPageViewLongPress and onDraw events.

Update ScreenCaptureToolHandler.swift as follows:

import Foundation

import MobileCoreServices
import ImagelO

class ScreenCaptureToolHandler: NSObject, IToolHandler {
public var type: FSAnnotType

var extensionManager: UlExtensionsManager!
var pdfViewCtrl: FSPDFViewCtrl!

var startPoint = CGPoint()
var endPoint = CGPoint()

init(extensionsManager: UlExtensionsManager) {
self.extensionManager = extensionsManager
self.pdfViewCtr| = extensionsManager.pdfViewCtrl
self.type = FSAnnotType.annotUnknownType
super.init()

}

func getName() -> String {
return""

}

func isEnabled() -> Bool {
return true

}

func onActivate() {

}

func onDeactivate() {

}

// Save the image to a specified path.

func saveJPGImage(imageRef: CGImage, path: String) {
let fileURL: CFURL = NSURL.fileURL(withPath: path) as CFURL
let dr = CGImageDestinationCreateWithURL(fileURL, kUTTypeJPEG, 1, nil)!
CGImageDestinationAddIimage(dr, imageRef, nil)
CGImageDestinationFinalize(dr)

129

Foxit PDF SDK for iOS
Developer Guide

// Handle the PageView Gesture and Touch event
func onPageViewLongPress(_ pagelndex: Int32, recognizer: UlLongPressGestureRecognizer) -> Bool {

if recognizer.state == UlGestureRecognizerState.began {
startPoint = recognizer.location(in: pdfViewCtrl.getPageView(pagelndex))
endPoint = startPoint

}

else if recognizer.state == UlGestureRecognizerState.changed {
endPoint = recognizer.location(in: pdfViewCtrl.getPageView(pagelndex))

// Refresh the page view, then the onDraw event will be triggered.
pdfViewCtrl.refresh(pagelndex)
}
else if recognizer.state == UlGestureRecognizerState.ended | | recognizer.state ==
UlGestureRecognizerState.cancelled {

// Get the size of the Rect.

let size = CGSize(width: fabs(endPoint.x - startPoint.x), height: fabs(endPoint.y - startPoint.y))

let origin = CGPoint(x: (startPoint.x < endPoint.x) ? startPoint.x : endPoint.x, y: (startPoint.y<endPoint.y) ?
startPoint.y : endPoint.y)

// Get the Rect.

let rect = CGRect(origin: origin, size: size)

let newDibwidth = rect.size.width

let newDibHeight = rect.size.height

if newDibwidth <1 | | newDibHeight < 1 {
return true

}

let pageView = pdfViewCtrl.getPageView(pagelndex)
let bound = pageView.bounds

// Create a bitmap with the size of the selected area.
let imgSize = newDibwidth * newDibHeight * 4
let capacity: Int = Int(newDibwidth) * Int(newDibHeight) * 4

let buff = UnsafeMutablePointer<UInt8>.allocate(capacity: capacity)
let pBuff = NSData.init(bytes: UnsafeRawPointer(buff), length: capacity)

let pitch: Int = Int(newDibwidth) * 4

guard let fsbitmap = FSBitmap.init(width: Int32(newDibwidth), height: Int32(newDibHeight),
format:FSBitmapDIBFormat.dibArgb , buffer: pBuff as Data, pitch: Int32(pitch)) else {

return false

}

fsbitmap.fillRect(OXFFFFFFFF, rect: nil)

let fsrenderer = FSRenderer.init(bitmap: fsbitmap, is_rgb_order: true)

let page = pdfViewCtrl.currentDoc?.getPage(pagelndex)

// Calculate the display matrix.
130

Foxit PDF SDK for iOS
Developer Guide

let fsmatrix = page?.getDisplayMatrix(-Int32(rect.origin.x), top: -Int32(rect.origin.y), width:
Int32(bound.size.width), height: Int32(bound.size.height), rotate: FSRotation.rotation0)

/1 Set the render content, then start to render the selected area to the bitmap.

fsrenderer?.setRenderContentFlags(UInt32(UInt8(FSRendererContentFlag.renderPage.rawValue) |
UInt8(FSRendererContentFlag.renderAnnot.rawValue)))

let progress = fsrenderer?.startRender(page, matrix: fsmatrix, pause: nil)

if ((progress) != nil) {

while (true) {
if (progress?.resume() != FSProgressiveState.toBeContinued)
{
break
}
}
}

// Convert FSBitmap to CGlmage.
let releaseData: CGDataProviderReleaseDataCallback = {
(info: UnsafeMutableRawPointer?, data:UnsafeRawPointer, size:Int) -> Void in

}

let provider: CGDataProvider = CGDataProvider.init(datalnfo: nil, data: pBuff.bytes, size: Int(imgSize),
releaseData: releaseData)!

let colorSpace = CGColorSpaceCreateDeviceRGB()

let bitmaplnfo: CGBitmapInfo = .byteOrderMask

let image = CGImage(width: Int(newDibwidth), height: Int(newDibHeight), bitsPerComponent: 8,
bitsPerPixel: 32, bytesPerRow: Int(newDibwidth) * 4, space: colorSpace, bitmaplInfo: bitmapinfo, provider:
provider, decode: nil, shouldinterpolate: true, intent: CGColorRenderinglntent.defaultintent)

// Save the image to a specified path.
let jpgPath = "/Users/Foxit/Desktop/ScreenCapture.jpg"
self.save]PGImage(imageRef: image!, path: jpgPath)

let alert = UlAlertView(title: ", message: " The selected area was saved as a JPG stored in the
/Users/Foxit/Desktop/ScreenCapture.jpg", delegate: nil, cancelButtonTitle: NSLocalizedString("OK", comment:
"OK")
alert.show()
return true
}

return true

}

// Handle the drawing event.
func onDraw(_ pagelndex: Int32, in context: CGContext) {
context.setLineWidth(CGFloat(2))
context.setLineCap(.square)
let color = UlColor.red
context.setStrokeColor(color.cgColor)
let points = [startPoint, CGPoint(x: CGFloat(endPoint.x), y: CGFloat(startPoint.y)), endPoint, CGPoint(x:
131

CGFloat(startPoint.x), y: CGFloat(endPoint.y))]
context.addLines(between: points)
context.closePath()
context.strokePath()

}

func onPageViewTap(_ pagelndex: Int32, recognizer: UlITapGestureRecognizer?) -> Bool {
return false

}

func onPageViewPan(_ pagelndex: Int32, recognizer: UIPanGestureRecognizer) -> Bool {
return false

}

func onPageViewShouldBegin(_ pagelndex: Int32, recognizer gestureRecognizer: UlGestureRecognizer) ->
Bool {
return true

}

func onPageViewTouchesBegan(_ pagelndex: Int32, touches: Set<AnyHashable>, with event: UlEvent) -> Bool

{

return false

}

func onPageViewTouchesMoved(_ pagelndex: Int32, touches: Set<AnyHashable>, with event: UlEvent) -> Bool

{

return false

}

func onPageViewTouchesEnded(_ pagelndex: Int32, touches: Set<AnyHashable>, with event: UIEvent) -> Bool

{

return false

}

func onPageViewTouchesCancelled(_ pagelndex: Int32, touches: Set<AnyHashable>, with event: UlEvent) ->
Bool {
return false
}
}

Note In the above code, you should specify an existing path to save the image. Here, the path is

"/Users/Foxit/Desktop/ScreenCapture.jpg", please replace it with a valid path.

Step 3: In ViewController.swift, instantiate a ScreenCaptureToolHandler object and then register

it to the UlExtensionsManager.

var screenCaptureToolHandler: ScreenCaptureToolHandler!

self.screenCaptureToolHandler = ScreenCaptureToolHandler.init(extensionsManager: self.extensionsManager)
132

Foxit PDF SDK for iOS
Developer Guide

self.extensionsManager.register(self.screenCaptureToolHandler)

Step 4: In ViewController.swift, set the ScreenCaptureToolHandler object as the current tool

handler.
Register the Doc event listener.

class ViewController: UlViewController, UlSearchBarDelegate, ISearchEventListener, IDocEventListener

self.pdfViewCtrl.register(self)

Set the current tool handler in the onDocOpened function:

func onDocOpened(_ document: FSPDFDoc?, error: Int32) {

self.extensionsManager.currentToolHandler = self.screenCaptureToolHandler

Now, we have really finished creating a custom tool in Swift. Then, build and run the demo. After

building the demo successfully, long press and select a rectangular area, and then a message box
will be popped up (refer to Figure 7-1). Go to "desktop", we will see the screenshot (refer to Figure
7-2).

This is just an example to show how to create a custom tool in Swift with Foxit PDF SDK for iOS. You

can refer to it or our demos to develop the tools you want.

133

8 Implement Foxit PDF SDK for iOS using

Cordova

When it comes to developing cross-platform mobile applications, Apache Cordova is an ideal open-
source framework. The 'cordova-plugin-foxitpdf' is one of the mobile framework plugins provided
by us to use with Foxit PDF SDK for iOS. The plugin enables you to achieve powerful PDF viewing
features using the Cordova framework. Through this plugin, you can preview any PDF file including
PDF 2.0 compliant files, XFA documents, and RMS protected documents, as well as commenting and

editing PDF documents.

For the usage of 'cordova-plugin-foxitpdf' plugin, please refer to the website

https://github.com/foxitsoftware/cordova-plugin-foxitpdf.

134

https://github.com/foxitsoftware/cordova-plugin-foxitpdf

9 Implement Foxit PDF SDK for iOS using React
Native

React Native is an open-source mobile development framework for building native apps using
JavaScript and React. The 'react-native-foxitpdf' is only one of the mobile framework plugins
provided by us to use with Foxit PDF SDK for iOS. It allows you to achieve powerful PDF viewing

features using the React Native framework. Through this plugin, you can preview any PDF file

including PDF 2.0 compliant files, XFA documents, and RMS protected documents, as well as
commenting and editing PDF documents.

For the usage of 'react-native-foxitpdf' plugin, please refer to the website
https://github.com/foxitsoftware/react-native-foxitpdf.

135

https://github.com/foxitsoftware/react-native-foxitpdf
https://github.com/foxitsoftware/react-native-foxitpdf

10 Implement Foxit PDF SDK for iOS using
Xamarin

Xamarin is a cross-platform development framework for building native apps using a shared C#

codebase. We provide separate bindings for Android and iOS (‘foxit_xamarin_android' and

'foxit_xamarin_ios') for developers to seamlessly integrate powerful PDF functionality of Foxit PDF
SDK into their Xamarin apps.

For the usage of 'foxit_xamarin_ios' plugin, please refer to the website

https://github.com/foxitsoftware/xamarin-foxitpdf.

136

https://github.com/foxitsoftware/xamarin-foxitpdf
https://github.com/foxitsoftware/xamarin-foxitpdf

11 FAQ

11.1 Bitcode Support
What is Bitcode? Does Foxit PDF SDK for iOS support Bitcode?

Bitcode is an intermediate representation of a compiled binary. Including bitcode will allow Apple to
re-optimize your app binary in the future without the need to submit a new version of your app to

the store.

Yes. Foxit PDF SDK for iOS supports Bitcode since version 3.0.

11.2 Open a PDF document from a specified PDF file path
How do | open a PDF document from a specified PDF file path?

Foxit PDF SDK for iOS provides multiple interfaces to open a PDF document. You can open a PDF
document from a specified PDF file path, or from a memory buffer. For from a specified PDF file

path, there are two ways to do that.

The first one is that just use the openDoc interface, which includes the operations of creating a PDF
document object (initWithPath), loading the document content (load), and setting the PDF

document object to view control (setDoc). Following is the sample code:

Note: The openDoc interface is only available for opening a PDF document from a file path. If you want to
customize to load a PDF document, you can implement it in the callback function (FSFileReadCallback),
and then create a document object with a FireRead instance using initWithHandler. Next, also load the
document content using load, and set the PDF document object to view control using setDoc.

#import "ViewController.h"
#import <FoxitRDK/FSPDFViewControl.h>

@interface ViewController : UlViewController
@end

@implementation ViewController

{

FSPDFViewCtrl* pdfViewCtrl;

}
137

Foxit PDF SDK for iOS
Developer Guide

- (void)viewDidLoad {
[super viewDidLoad];

/I Get the path of a PDF.
NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" ofType:@"pdf"];

// Initilize a FSPDFViewCtrl object with the size of the entire screen.
pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

// Open an unencrypted PDF document from a specified PDF file path.
[pdfViewCtrl openDoc:pdfPath password:nil completion:nill;

// Add the pdfView to the root view.
[self.view addSubview:pdfViewCtrl];

}
@end

The second one is that use the initWithPath interface to create a PDF document object, use load
interface to load the document content, and then use setDoc to set the PDF document object to view

control. Following is the sample code:

#import "ViewController.h"
#import <FoxitRDK/FSPDFViewControl.h>

@interface ViewController : UlViewController
@end

@implementation ViewController

{

FSPDFViewCtrl* pdfViewCtrl;
}

- (void)viewDidLoad {
[super viewDidLoad];

// Get the path of a PDF.
NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" of Type:@"pdf'];

// Initialize a PDFDoc object with the path to the PDF file.
FSPDFDoc* pdfdoc = [[FSPDFDoc alloc] initWithPath: pdfPath];

// Load the unencrypted document content.
if(FSErrSuccess != [pdfdoc load:nil]) {
return;

}

// Initilize a FSPDFViewCtrl object with the size of the entire screen.
138

pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

// Set the document to view control.
[pdfViewCtrl setDoc:pdfdoc];

// Add the pdfView to the root view.
[self.view addSubview:pdfViewCtrl];

}
@end

11.3 Display a specified page when opening a PDF document
What should I do if | want to display a specified page when opening a PDF document?

To display a specified page when opening a PDF file, the interface [pdfViewCtrl gotoPage: (int)
animated: (BOOL)] should be used. Foxit PDF SDK for iOS utilizes multi-thread to improve rendering
speed, so please make sure the document has been loaded successfully before using the gotoPage

interface. There are two ways to realize the feature as follows:

The first one is that making a conditional statement in the openDoc interface to ensure that only
when the document loading is complete, then call the gotoPage. If not, the gotoPage interface will
not work, and the first page will be displayed. It is because the openDoc interface starts a new

thread to perform the operation. Following is the sample code:

#import "ViewController.h"
#import <FoxitRDK/FSPDFViewControl.h>

@interface ViewController : UIViewController
@end

@implementation ViewController

{

FSPDFViewCtrl* pdfViewCtrl;
}

- (void)viewDidLoad {
[super viewDidLoad];

// Get the path of a PDF.
NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" of Type:@"pdf"];

// Initilize a FSPDFViewCtrl object with the size of the entire screen.
pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

139

Foxit PDF SDK for iOS
Developer Guide

// Open an unencrypted PDF document from a specified PDF file path, and go to the third page when
completing the document loading.
[pdfViewCtrl openDoc:pdfPath password:nil completion:A(enum FSErrorCode error){

if(error == FSErrSuccess)

/1 Display the third page.
[pdfViewCtrl gotoPage:2 animated:NOJ;
b2}

// Add the pdfView to the root view.
[self.view addSubview:pdfViewCtrl];

}
@end

The second one is that implement the <IDocEventListener> protocol, and then call the gotoPage

interface in the onDocOpened event. Following is the sample code:

#import "ViewController.h"
#import <FoxitRDK/FSPDFViewControl.h>

@interface ViewController : UlViewController <IDocEventListener>

@end

@implementation ViewController

{
FSPDFViewCtrl* pdfViewCtrl;

}

- (void)viewDidLoad {
[super viewDidLoad];

// Get the path of a PDF
NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" of Type:@"pdf"];

// Initilize a FSPDFViewCtrl object with the size of the entire screen.
pdfViewCtrl = [[FSPDFViewCtrl alloc] initWithFrame: [self.view bounds]];

// Register the PDF document event listener.
[pdfViewCtrl registerDocEventListener:self];

// Open an unencrypted PDF document from a specified PDF file path.
[pdfViewCtr|l openDoc:pdfPath password:nil completion:nil];

// Add the pdfView to the root view.
[self.view addSubview:pdfViewCtrl];

140

#pragma IDocEventListener

-(void)onDocOpened:(FSPDFDoc *)document error:(int)error

{
/1 display the third page.
[pdfViewCtr| gotoPage:2 animated:NO]J;

}
@end

11.4 License key and serial number cannot work

I have downloaded the SDK package from your website without making any changes. Why
can't the license key and serial number work?

Generally, the package uploaded to the website is supposed to work. It has been tested before it is
uploaded. So, if you find the license key and serial number cannot work, it may be caused by the
date of your device. If the device's date is earlier than the StartDate in the rdk_key.txt file found in
the "libs" folder of the download package, the "librdk.so" library will be failed to unlock. Please check

the date of your device.

11.5 Add a link annotation to a PDF file
How can | add a link annotation to a PDF file?

To add a link annotation to a PDF file, you should first call the - [FSPDFPage addAnnot:rect:] to add an
annotation to a specified page, then call + [FSAction create:action_type:] to create an action, and set
the action to the added link annotation. Following is the sample code for adding a URI link

annotation to the first page of a PDF file:

#define DOCUMENT_PATH [NSSearchPathForDirectoriesinDomains(NSDocumentDirectory,
NSUserDomainMask, YES) objectAtindex:0]

// Get the path of a PDF
NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" of Type:@"pdf"];

// Initialize a PDFDoc object with the path to the PDF file.
FSPDFDoc *document = [[FSPDFDoc alloc] initWithPath: pdfPath];

//'load the unencrypted document content.
[document load:nil];

// Get the first page of the PDF file.
141

Foxit PDF SDK for iOS
Developer Guide

FSPDFPage *page = [document getPage:0];

// Add a link annotation to the first page.
FSRectF *rect = [[FSRectF alloc] initWithLeft1:250 bottom1:650 right1:450 top1:750];
FSLink *linkAnnot = [[FSLink alloc] initWithAnnot:[page addAnnot: FSAnnotLink rect:rect]];

// Create a URI action and set the URI.

FSURIAction *uriAction = [[FSURIAction alloc] initWithAction:[FSAction create:document
action_type:FSActionTypeURI]];

[uriAction setURI:@"https://www.foxitsoftware.com"];

// Set the action to link annotation.
[linkAnnot setAction:uriAction];

// Reset appearance stream.
[linkAnnot resetAppearanceStream];

// Save the document that has added the link annotaiton.
[document saveAs:[DOCUMENT_PATH stringByAppendingString:@"Sample_annot.pdf"]

save_flags:FSPDFDocSaveFlagNormal];

11.6 Insert an image into a PDF file
How do | insert an image into a PDF file?

To insert an image into a PDF file, you can call - [FSPDFPage
addIimageFromFilePath:position:width:height:auto_generate_content:] interface. Following is the sample

code for inserting an image into the first page of a PDF file:

Note: Before calling - [FSPDFPage addImageFromFilePath:position:width:height:auto_generate_content:]

interface, you should get and parse the page that you want to add the image.

#define DOCUMENT_PATH [NSSearchPathForDirectoriesinDomains(NSDocumentDirectory,
NSUserDomainMask, YES) objectAtindex:0]

// Get the path of a PDF.
NSString* pdfPath = [[NSBundle mainBundle] pathForResource:@"Sample" of Type:@"pdf"];

// Initialize a PDFDoc object with the path to the PDF file.
FSPDFDoc *document = [[FSPDFDoc alloc] initWithPath: pdfPath];

// load the unencrypted document content.

[document load:nil];

142

/1 Get the first page of the PDF file.
FSPDFPage *page = [document getPage:0];

/1 Parse the page.

if (I[page isParsed]) {
FSProgressive* progressive = [page startParse: FSPDFPageParsePageNormal pause:nil is_reparse:NO]J;
while ([progressive resume] == FSProgressiveToBeContinued) {

continue;

// Get the image path.
NSString* imagePath = @"/Users/xiaole/Desktop/1.png";

// Add an image to the first page.

FSPointF* point = [[FSPointF alloc] init];

[point set:100 y:300];

[page addimageFromFilePath:imagePath position:point width:100 height:120 auto_generate_content:YES];

// Save the document that has added the link annotaiton.
[document saveAs:[DOCUMENT_PATH stringByAppendingString:@"Sample_image.pdf"]
save_flags:FSPDFDocSaveFlagNormal];

11.7 Highlight the links in PDF documents and set the highlight color

How can | set whether to highlight the links in PDF documents? And how to set the highlight

color if | want to highlight links?

By default, highlighting links in PDF documents is enabled. If you want to disable it or to set the

highlight color, you can do it in the configuration JSON file (only support for version 6.3 or higher) or

by calling the APIs.
Note: If you want to set the highlight color, please make sure the highlighting links feature is enabled.
Through JSON file

Set ""highlightLink": false," to disable highlighting the links in PDF document.

Set ""highlightLinkColor": "#16007000"," to set the highlight color (input the color value as you wish).

Through calling API
143

UlExtensionsManager.enableHighlightLinks property is provided to set whether to enable
highlighting the links in PDF documents. If you do not want to highlight links, please set the
parameter to "false" as follows:

// Assume you have already Initialized a UlExtensionsManager object
extensionsManager.enableHighlightLinks = false;

UlExtensionsManager.linksHighlightColor property is used to set the highlight color. Following is
a sample for setting this property:

// Assume you have already Initialized a UlExtensionsManager object
extensionsManager.linksHighlightColor = [UIColor colorWithRed:0 green:0 blue:1 alpha:0.3];

11.8 Highlight the form fields in PDF form files and set the highlight
color

How can | set whether to highlight the form fields in PDF form files? And how to set the
highlight color if | want to highlight form fields?

By default, highlighting form fields in PDF documents is enabled. If you want to set the highlight

color, please make sure you have not disabled the highlighting form fields feature.

From version 6.3, you can disable/enable highlighting form fields or set the highlight color easily in
the configuration JSON file, just set the following two items:

"highlightForm": true,
"highlightFormColor": "#200033cc",

For the version before 6.3, if you want to disable/enable highlighting form fields or set the highlight
color, you should modify the source code of the Ul Extensions Component using - [FSFiller
highlightFormFields:] and - [FSFiller setHighlightColor:] interfaces.

- [FSFiller highlightFormFields:] interface is provided to set whether to enable highlighting the form

fields in PDF form files. Please refer to section 4.3 "Customize Ul implementation through source

code" to add the "uiextensions" project found in the "libs/uiextensions_src" folder to your project.
Then, find the onDocOpened function in "UlExtensions/Form/FormAnnotHandler.m", and set the

parameter of - [FSFiller highlightFormFields:] to "false" as follows:

- (void)onDocOpened:(FSPDFDoc*)Jdocument error:(int)error
{

[_formFiller highlightFormFields:false];
144

}

- [FSFiller setHighlightColor:] interface is used to set the highlight color. Following is a sample for
calling this API:

- (void)onDocOpened:(FSPDFDoc* Jdocument error:(int)error

{

[_formFiller highlightFormFields:ture];
[_formFiller setHighlightColor:0x4b00ff00];

}
11.9 Indexed Full Text Search support

Does Foxit PDF SDK support Indexed Full Text Search? If yes, how can | use it to search

through PDF files stored offline on my mobile device?
Yes. Foxit PDF SDK for iOS supports Indexed Full Text Search.
To use this feature, follows the steps below:

a) Getdocument source information. Create a document source based on a directory which will be

used as the search directory.
~(id)initWithDirectory: (NSString *)directory;
b) Create a full text search object, and set a path of database to store the indexed data.

-(id)init;
-(void)setDataBasePath:(NSString *)path_of_data_base;

c) Startto index the PDF documents which receive from the source.

-(FSProgressive*)startUpdatelndex: (FSDocumentsSource*)source pause: (id<FSPauseCallback>)pause
reUpdate:(BOOL)reUpdate;

Note: You can index a specified PDF file. For example, if the contents of a PDF file have been changed,

you can re-index it using the following API:

-(BOOL)updatelndexWithFilePath: (NSString *)file_path;

d) Search the specified keyword from the indexed data source. The search results will be returned

to external by a specified callback function when a matched one is found.

145

Foxit PDF SDK for iOS
Developer Guide

-(BOOL)searchOf: (NSString *)match_string rank_mode:(FSFullTextSearchRankMode)rank_mode callback:
(id<FSSearchCallback>)Callback;

Following is a sample for how to use it:
- (void)FullTextSearch {

NSString *directory = @"INPUT_DIRECTORY";
FSDocumentsSource* docs = [[FSDocumentsSource alloc] initWithDirectory:directory];
FSFullTextSearch* fulltextSearch = [FSFullTextSearch init];

NSString* dbPath = @"The path of data base to store the indexed data...";
[fulltextSearch setDataBasePath:dbPath];

FSProgressive* progressive = [fulltextSearch startUpdatelndex:docs pause:nil reUpdate:NOJ;
if (progressive) {
while (true) {
if ([progressive resume] != FSProgressiveToBeContinued) {
break;
}
}
}

[fulltextSearch searchOf:@"Foxit" RankMode:FSFullTextSearchRankNone callback:[[FSSearchCallbackimp
alloc] init]];

}

@end

A sample callback function is as follows:

@interface FSSearchCallbackimp: NSObject<FSSearchCallback>
@end

@implementation FSSearchCallbackimp

-(int)retrieveSearchResult:(NSString*)file_path page_index:(int)page_index
match_result:(NSString*)match_result match_start_text_index:(int)match_start_text_index
match_end_text_index:(int)match_end_text_index
{

NSLog (@"file_path: %@\n", file_path);

NSLog (@"page_index: %i, match_start_text_index: %i, match_end_text_index: %i\n", page_index,
match_start_text_index, match_end_text_index);

NSLog (@"match_result: %@\n\n", match_result);

return 0O;

}

@end

146

Note:

o The indexed full text search provided by Foxit PDF SDK for iOS will go through a directory
recursively, so that both the files and the folders under the search directory will be indexed.

e Ifyou want to abort the index process, you can pass in a pause callback parameter to the
startUpdatelndex interface. The callback function NeedPauseNow will be invoked once a
PDF document is indexed, so that the caller can abort the index process when the callback

NeedPauseNow return "true".

e The location of the indexed database is set by setDataBasePath interface. If you want to
clear the indexed database, you shoud do it manually. And now, removing a file from index

function is not supported.

e FEvery search result of the searchOf interface is returned to external by a specified callback.

Once the searchOf interface returns "true" or "false", it means the searching is finished.

11.10 Print PDF document
Does Foxit PDF SDK for iOS support to print a PDF document? If yes, how can | use it?

Yes. Foxit PDF SDK for iOS supports the print feature from version 5.1. You can press the Wireless
Print button on the More Menu view in the Complete PDF viewer demo to print the PDF document.

Furthermore, you can call the following two APIs to print the PDF documents:

// for iPhone and iTouch
(void)printDoc:(FSPDFDoc *)doc animated:(BOOL)animated jobName:(nullable NSString *)jobName
delegate:(nullable id<UlIPrintinteractionControllerDelegate>)delegate completionHandler:(nullable

UlPrintinteractionCompletionHandler)completion;

// for iPad
(void)printDoc:(FSPDFDoc *)doc fromRect:(CGRect)rect inView:(UIView *)view animated:(BOOL)animated
jobName:(nullable NSString *)jobName delegate:(nullable id<UIPrintinteractionControllerDelegate>)delegate

completionHandler:(nullable UIPrintinteractionCompletionHandler)completion;
Following is a sample for how to use it:

UlPrintinteractionCompletionHandler completion = A(UIPrintInteractionController *_Nonnull
printinteractionController, BOOL completed, NSError *_Nullable error) {
if (error) {
UlAlertAction* action = [UIAlertAction actionWithTitle:[@"Warning:"
stringByAppendingString:error.localizedDescription] style:UIAlertActionStyleDefault handler:nil];
147

Foxit PDF SDK for iOS
Developer Guide

UlAlertController* controller = [[UIAlertController alloc] init];

[controller addAction:action];

[self showViewController:controller sender:nil];
}
b
NSString *fileName = @"xxx.pdf";
FSPDFDoc* doc = [[FSPDFDoc alloc] initWithPath:fileName];
[UlIExtensionsManager printDoc: doc animated:YES jobName:fileName delegate:nil

completionHandler:completion];

11.11 Night mode color settings
How can | set the night mode color?

if you want to set the night mode color, please first set the properties
FSPDFViewCtrl.mappingModeBackgroundColor and FSPDFViewCtrl.mappingModeForegroundColor,
and then set the FSPDFViewCtrl.colorMode to FSRendererColorModeMapping.

Note: If the FSPDFViewCtrl.colorMode has already been set to FSRendererColorModeMapping, you still
need to set it again after updating the FSPDFViewCtrl.mappingModeBackgroundColor and
FSPDFViewCtrl.mappingModeForegroundColor. Otherwise, the settings may not work.

The properties should be changed in the source code of the Ul Extensions Component, please refer

to section 5.3 "Customize Ul implementation through source code" to add the "uiextensions" project

found in the "libs/uiextensions_src" folder to your project. Then, find the settingBar function in

"UlExtensions/UlExtensionsManager.m", and set the color as you like.

Following is a sample to set the night mode color:

- (void)settingBar:(FSSettingBar *)settingBar isNightMode:(BOOL)isNightMode {

self.settingBar.viewSettingManager.isDayOrNightForLast = YES;

if ([self.pdfViewCtr| getPageLayoutMode] == PDF_LAYOUT_MODE_REFLOW) {
UlColor* color = isNightMode ? UlColor.blackColor : UlColor.whiteColor;
[self.pdfViewCtrl setReflowBackgroundColor:color];
[self.pdfViewCtrl setPageLayoutMode:PDF_LAYOUT_MODE_REFLOW];
self.pdfViewCtrl.isNightMode = isNightMode;

lelse{
if ({(self.pdfViewCtrl.isNightMode == isNightMode && self.pdfViewCtrl.colorMode !=

FSRendererColorModeMappingGray)) {
148

Foxit PDF SDK for iOS
Developer Guide

self.pdfViewCtrl.isNightMode = isNightMode;
if (self.pdfViewCtrl.nightColorMode == FSNightColorModeMappingGray && isNightMode) {
self.pdfViewCtrl.colorMode = FSRendererColorModeMappingGray;

if (isNightMode && self.pdfViewCtrl.nightColorMode != FSNightColorModeMappingGray)
{
/1 Set background color.
self.pdfViewCtrl.mappingModeBackgroundColor = [UIColor redColor];
// Set foreground color.
self.pdfViewCtrl.mappingModeForegroundColor = [UIColor greenColor];
/1 Set color mode.
self.pdfViewCtrl.colorMode = FSRendererColorModeMapping;
/1 Set the background color for the areas that are out of the pdfviewctrl.
self.pdfViewCtrl.backgroundColor = [UIColor colorWithRed:20.0/255.0 green:20.0/255.0
blue:20.0/255.0 alpha:1.0];
}
else {
self.pdfViewCtrl.colorMode = FSRendererColorModeNormal;
self.pdfViewCtrl.backgroundColor = [UIColor colorWithRed:230.0/255.0 green:230.0/255.0
blue:230.0/255.0 alpha:1.0];

}

11.12 Upload Foxit SDK Framework to Apple App Store

Why do | meet "Invalid Binary Architecture" warning and "Code signing
"FoxitRDK.framework" failed" error when | uploaded my app embedded your SDK Framework

to Apple App Store?

Foxit SDK Framwork includes arm64, armv7, i386, and x86_64 architectures, but the i386, and
x86_64 architectures are not allowed to be uploaded to Apple App Store so that you will meet the
"Invalid Binary Architecture" warning and "Code signing "FoxitRDK.framework" failed" error if you

use the framework directly.

To solve this problem, Foxit SDK provides a script named "prepare-framework-to-publish-to-

appstore.sh” found in the "libs" folder to strip the arm architectures, and then output the library to

149

the directory "./device/FoxitRDK.framework". You should use this library in your project and then

you can publish your app to Apple App Store.

11.13 Output exception/crash log information

How can | output exception/crash log information when my app throws exceptions or

crashes?

If you want to output exception/crash log information, all you need is to implement the
<lExceptionLogger> protocol, and then call the interface + [FSPDFViewCtrl setExceptionLogger:].
11.14 Localization settings

How to change Localization settings with Foxit PDF SDK for iOS?

By default, Foxit PDF SDK for iOS will automatically switch the Ul language according to the current
language of your system, provided that the language is supported by Foxit PDF SDK for iOS.

Currently, Foxit PDF SDK for iOS supports the following languages: English, Korean, and Chinese
(Simplified, Traditional). Those language resource files are located in the

"libs\uiextensions_src\UIExtensions\Resource\FoxitLocalizable" folder.
If you want to use your own localization language that is not supported by Foxit PDF SDK for iOS:

e For version 6.4, you can refer to the article

https://developers.foxitsoftware.com/kb/article/change-localization-settings-pdf-sdk-ios/ to

change the localization settings, which needs to modify the localization settings in the

UlExtensions Component.

From version 7.0 or higher, you can do it directly in your project. First, add a language to your
project, and translate all the entries to the language you wish. Then, call + [FSLocalization
addLanguage:table:languageAbbr:] to add the new created language that you want to support. Last, to
make it work, you can change your current system language, or call + [FSLocalization

setCurrentLanguage:FSLocalizationLanguageOptionalEnglish] to set current language.

11.15 Update page binding to support Right-to-Left

How can | automatically update page binding to support Right-to-Left?

150

https://developers.foxitsoftware.com/kb/article/change-localization-settings-pdf-sdk-ios/

For most languages, the reading habits we use are left-to-right, which calls for a page binding on the
left edge. However, there are also some languages that read from right to left, such as Arabic and
Hebrew and several East Asian scripts. In this case, binding on the right edge is preferable for users,
which the pages will be arranged from right to left (the first page is on the top right). To do this, we
made the adaptation of the right-to-left page layout.

The page binding is used with horizontal scrolling. For vertical scrolling, it has effect only when

double-page mode is enabled.
Updating the Page Binding Programmatically

Foxit PDF SDK for iOS defines an enumeration in the FSPDFViewCtrl class to infer how a document

should be presented to the user. The possible values are:

e PDF_PAGE_BINDING_LEFT_EDGE: the document flows from left to right

e PDF_PAGE_BINDING_RIGHT_EDGE: the document flows from right to left

e PDF_PAGE_BINDING_UNKNOWN: the document doesn't explicitly define a page binding, so
the behavior may be the same as it is with PDF_PAGE_BINDING_LEFT_EDGE

/**

* @brief Enumeration for page binding edge.
*
* @details Values of this enumeration should be used alone.
&/l
typedef enum {
/** The document doesn't explicitly define a page binding, so the behavior is the same as it is with
LEFT_EDGE or RIGHT_EDGE.*/
PDF_PAGE_BINDING_UNKNOWN = Q,
/** The document flows from left to right.*/
PDF_PAGE_BINDING_LEFT_EDGE =1,
/** The document flows from right to left.*/
PDF_PAGE_BINDING_RIGHT_EDGE = 2,
} PDF_PAGE_BINDING_EDGE;

Then, call the following function to update the page binding to swith the page layout:

[pdfViewerCtrl setPageBindingEdge:PDF_PAGE_BINDING_RIGHT_EDGE];

The Ul result after using this function:

In horizontal scrolling: (LTR: left-to-right; RTL: right-to-left)

151

Foxit PDF SDK for iOS
Developer Guide

(13

bxit PDF SDK

forandroid/ios

LTR

In vertical scrolling: (has effect in double-page mode (Facing/Coving)):

foxit

Foxit PDF SD

fofAndroid/i0s

4

PDF

www foxit.com

w @ 0

RTL

LTR

Updating the Page Binding via the Ul

RTL

152

Foxit PDF SDK for iOS
Developer Guide

You can create a demo using uiextensionsDynamic.framework or use complete_pdf viewer
demo directly to update the page binding. After running the demo, find the View settings bar, you
can enable or disable the Right to Letf as below:

Right to Left o

& Fit Page

11.16 Issue with opening web PDFs

How can | resolve the issue that some documents may not display correctly or cannot be
displayed at all when opening web PDFs using - [FSPDFViewCtrl openDocFromURL:password:

cacheOption: httpRequestProperties: completion:] interface?

The issue occurs when some documents with numerous objects are closed before they finish
loading, resulting in an incomplete caching process. When attempting to load the data, there is no

current method to determine the data's validity, only whether it has been cached.

To resolve this issue, it is recommended for users to clear cache data and reload the document
using the following method. This approach should not impact document opening speed, as the SDK

internally loads web pages based on page numbers.

/**

* @brief Clear the cache file.

* @param url It should be a remote path.
*

&
-(void)clearCacheFile:(NSString *)url;

/**
* @brief Clear all files cached by SDK.
153

Foxit PDF SDK for iOS
Developer Guide

&
-(void)clearAllCacheFile;

11.17 Implement UlScrollViewDelegate events
How can | implement the events of UlScrollViewDelegate?

If you want to implement some UlScrollViewDelegate events, you can refer to our
IScrollViewEventListener interface. You can use this interface to do some things, such as
monitoring the states for "canceling page turn" and "zooming" when swiping to turn page and

zooming in/out PDF page.
For example, to monitor the "canceling page turn" state, you can refer to the following code:
e First, register a callback as follows:

[self.pdfViewControl registerDocEventListener:self];

e Then, by making judgments, you can monitor whether the page turn is canceled:

@property (nonatomic, assign) int turnPagelndex;
@property (nonatomic, strong) UlViewController *scrollView;

- (void)onScrollViewWillBeginDragging:(UIScrollView *)scrollView{
if (scrollView == [self.pdfViewControl getPageContainer]){
self.turnPagelndex = [self.pdfViewControl getCurrentPage];
NSLog(@"Will turn page %d",self.turnPagelndex);
}
}

- (void)onScrollViewDidEndDecelerating:(UIScrollView *)scrollView{
if (scrollView == [self.pdfViewControl getPageContainer]){
int pagelndex = [self.pdfViewControl getCurrentPage];
if (self.turnPagelndex == pagelndex){
NSLog(@"Cancel page turn %d",self.turnPagelndex);
}
}
}

154

11.18 Improve efficiency in inserting and rendering watermarks
How can | improve efficiency in inserting and rendering watermarks?

Some customers encounter issues such as delays and incomplete watermark display, when adding a

custom watermark to their product. In this case, you can refer to the following method:

// Once a watermark is created, it can be reused multiple times, preventing the necessity for repeated creations
and circumventing any efficiency problems.
if (Iself.watermark) {

FSWatermarkSettings *settings = [[FSWatermarkSettings alloc] initWithPosition:FSPosCenter offset_x:0
offset_y:0 flags:0 scale_x:1 scale_y:1 rotation:FSPosTopCenter opacity:1];

settings.flags = FSWatermarkSettingsFlagOnTop;

FSWatermarkTextProperties *textProperties = [[FSWatermarkTextProperties alloc] initWithFont:[[FSFont
alloc] initWithFont_id:FSFontStdIDTimesB] font_size:30.f color:0xA4A4A4
style:FSWatermarkTextPropertiesFontStyleNormal line_space:1 alignment:FSAlignmentCenter];

self.watermark = [[FSWatermark alloc] initWithDocument:[self.pdfViewControl getDoc] text:@"E27KEL"
properties:textProperties settings:settings];

}

FSPDFPage *page = [[self.pdfViewControl getDoc] getPage:index];
if (page.isParsed) {
[page startParse];

}

// Determine whether the watermark has been loaded on the current page to avoid loading duplicate
watermarks
if (Ipage.hasWatermark) {

[self.watermark insertToPage:pagel;

[self.pdfViewControl refresh:index];

}
11.19 Enable ink (handwriting) recognition
How can | enable ink (handwriting) recognition?

By default, the ink recognition feature is disable. From version 9.1, If you want to enable ink

recognition, you can just set the following item in the configuration JSON file:

"uiSettings": {

"enableHandwritingRecognition" : true,

155

12 Technical Support

Foxit Support

In order to provide you with a more personalized support for a resolution, please log in to your Foxit
account and submit a ticket so that we can collect details about your issue. We will work to get your

problem solved as quickly as we can once your ticket is routed to our support team.

You can also check out our Support Center, choose Foxit PDF SDK which also has a lot of helpful

articles that may help with solving your issue.

Phone Support

Phone: 1-866-MYFOXIT or 1-866-693-6948

156

https://account.foxit.com/cas/login?service=https%3A%2F%2Fwww.foxit.com%2Fsupport%2Fticket.html%3F_ga%3D2.256387019.1360406299.1628848086-542337066.1628848086%26sign-from%3Dmember%26an3DFoxitOffice
https://account.foxit.com/cas/login?service=https%3A%2F%2Fwww.foxit.com%2Fsupport%2Fticket.html%3F_ga%3D2.256387019.1360406299.1628848086-542337066.1628848086%26sign-from%3Dmember%26an3DFoxitOffice
https://kb.foxitsoftware.com/hc

	1 Introduction to Foxit PDF SDK
	1.1 Foxit PDF SDK
	1.2 Foxit PDF SDK for iOS
	1.2.1 Why Foxit PDF SDK for iOS is your choice
	1.2.2 Main Frame of Foxit PDF SDK for iOS
	1.2.3 UI Extensions Component Overview
	1.2.4 Key Features of Foxit PDF SDK for iOS

	1.3 Evaluation
	1.4 License
	1.5 About this Guide

	2 Getting Started
	2.1 Requirements
	2.2 What is in the Package
	2.2.1 The package without Mac Catalyst
	2.2.2 The package with Mac Catalyst

	2.3 How to run a demo
	2.3.1 Function demo
	2.3.2 Viewer control demo
	2.3.3 Complete PDF viewer demo
	2.3.3.1 Complete PDF Viewer demo without Mac Catalyst
	2.3.3.2 Complete PDF Viewer demo with Mac Catalyst

	3 Rapidly building a full-featured PDF Reader
	3.1 Make an iOS app in Objective-C with Foxit PDF SDK for iOS
	3.1.1 Create a new iOS project in Objective-C
	3.1.2 Integrate Foxit PDF SDK for iOS into your apps
	3.1.3 Initialize Foxit PDF SDK for iOS
	3.1.4 Display a PDF document using FSPDFViewCtrl
	3.1.5 Build a full-featured PDF Reader with UI Extensions Component
	3.1.6 Add the scanning feature based on the full-featured PDF Reader

	3.2 Make an iOS app in Swift with Foxit PDF SDK for iOS
	3.2.1 Create a new iOS project in Swift
	3.2.2 Integrate Foxit PDF SDK for iOS into your apps
	3.2.3 Initialize Foxit PDF SDK for iOS
	3.2.4 Display a PDF document using FSPDFViewCtrl
	3.2.5 Build a full-featured PDF Reader with UI Extensions Component
	3.2.6 Add the scanning feature based on the full-featured PDF Reader

	4 Rapidly building a full-featured PDF Reader using Mac Catalyst
	4.1.1 Create a Mac app built with Mac Catalyst
	4.1.2 Integrate Foxit PDF SDK for iOS (Catalyst) into your apps
	4.1.3 Initialize Foxit PDF SDK for iOS (Catalyst)
	4.1.4 Display a PDF document using FSPDFViewCtrl
	4.1.5 Build a full-featured PDF Reader with UI Extensions Component

	5 Customizing User Interface
	5.1 Customize the UI through a configuration file
	5.1.1 Introduction to JSON file
	5.1.2 Configuration Items Description
	5.1.3 Instantiate a UIExtensionsManager object with the configuration file
	5.1.4 Examples for customizing UI through a configuration file

	5.2 Customize UI elements through APIs
	5.2.1 Customize to hide top/bottom toolbar
	5.2.2 Customize to hide a specific Panel
	5.2.3 Customize to hide the UI elements in the View setting bar
	5.2.4 Customize to hide the UI elements in the More Menu view

	5.3 Customize UI implementation through source code

	6 Working with SDK API
	6.1 Render
	6.1.1 How to render a specified page to a bitmap
	6.1.2 How to render a specified page to a platform device context

	6.2 Text Page
	6.2.1 How to get the text area on a page by selection

	6.3 Text Search
	6.3.1 How to search a text pattern in a PDF

	6.4 Bookmark (Outline)
	6.4.1 How to travel the bookmarks of a PDF in depth first order

	6.5 Reading Bookmark
	6.5.1 How to add a custom reading bookmark and enumerate all the reading bookmarks

	6.6 Attachment
	6.6.1 How to embed a specified file to a PDF document
	6.6.2 How to export the embedded attachment file from a PDF and save it as a single file

	6.7 Annotation
	6.7.1 How to add annotations to a PDF page
	6.7.2 How to delete annotations in a PDF page
	6.7.3 How to register listeners to receive annotation events

	6.8 Form
	6.8.1 How to import and export form data from or to a XML file

	6.9 Security
	6.9.1 How to encrypt a PDF file with password

	6.10 Signature
	6.10.1 How to sign a PDF document and verify the signature
	6.10.2 How to set customized time information for signature

	7 Creating a Custom Tool
	7.1 Create a Regional Screenshot Tool in Objective-C
	7.2 Create a Regional Screenshot Tool in Swift

	8 Implement Foxit PDF SDK for iOS using Cordova
	9 Implement Foxit PDF SDK for iOS using React Native
	10 Implement Foxit PDF SDK for iOS using Xamarin
	11 FAQ
	11.1 Bitcode Support
	11.2 Open a PDF document from a specified PDF file path
	11.3 Display a specified page when opening a PDF document
	11.4 License key and serial number cannot work
	11.5 Add a link annotation to a PDF file
	11.6 Insert an image into a PDF file
	11.7 Highlight the links in PDF documents and set the highlight color
	11.8 Highlight the form fields in PDF form files and set the highlight color
	11.9 Indexed Full Text Search support
	11.10 Print PDF document
	11.11 Night mode color settings
	11.12 Upload Foxit SDK Framework to Apple App Store
	11.13 Output exception/crash log information
	11.14 Localization settings
	11.15 Update page binding to support Right-to-Left
	11.16 Issue with opening web PDFs
	11.17 Implement UIScrollViewDelegate events
	11.18 Improve efficiency in inserting and rendering watermarks
	11.19 Enable ink (handwriting) recognition

	12 Technical Support

