
Foxit Print Manager

Introduction

Foxit Print Manager is a versatile tool for adding PDF printing functionality to your software on
Windows.

Features

Uses the Foxit PDF SDK for page rendering
Auto page scaling and rotation
Advanced job control
DLL with a C interface can be controlled from any programming language
C# interface class provided for .NET Core and .NET Framework

How is Foxit Print Manager distributed?

Foxit Print Manager contains a DLL which in turn uses the Foxit PDF SDK DLL. The following �les are
included with the distribution:

lib\fsdk_printmanager_win32.dll The 32-bit build of the Foxit Print Manager DLL

lib\fsdk_printmanager_win64.dll The 64-bit build of the Foxit Print Manager DLL

lib\fsdk_win32.dll The 32-bit build of the Foxit PDF SDK DLL

lib\fsdk_win64.dll The 64-bit build of the Foxit PDF SDK DLL

lib*.lib C/C++ import libs for the DLLs

doc\Foxit PDF SDK Print Manager C API Reference.pdf The function reference for the C interface

doc\Foxit PDF SDK Print Manager .NET API Reference.pdf The function reference for the .NET interface (C#)

doc\Foxit PDF SDK Print Manager Developer Guide.pdf The PDF version of the developer guide

examples\ExtensionsDemo\printmanager\ Demo projects for .NET and C++

Deployment

All the DLLs must be deployed into the same directory.

Using the C# interface for .NET

Simply add the FoxitPrintManager.cs �le to your project and create a new instance of the
FoxitPrintManager.PrintManagerDLL class.

// Use the correct path/filename for the DLL
string dllName = "..\\..\\lib\\fsdk_printmanager_win32.dll";
var printManager = new FoxitPrintManager.PrintManagerDLL(dllName);

Note: If you are using the .NET Framework 4.6 or earlier, rather use the FoxitPrintManager4.6.cs �le
which contains custom UTF-8 string marshalling code.

string sn = "... Foxit PDF SDK serial number here ...";
string key = "... Foxit PDF SDK license key here ...";
if (printManager.InitPrintManager(sn, key) == 1)
{
 // Other Print Manager function calls can now be made
}

Quickly printing a PDF

The easiest way to print a PDF from a �le on disk is to use the PrintPDFFromFile function. You just
need the �le name and the password, if any, and a single function call:

string fileToPrint = "C:\\MyFiles\\MyDocument.pdf";
string filePassword = "";
if (File.Exists(fileToPrint))
{
 printManager.PrintPDFFromFile(fileToPrint, filePassword);
}

The document will be printed to the default printer.

Quickly printing a PDF from memory

If the PDF exists in memory as a byte array, it can be printed easily using the PrintPDFFromMemory
function.

byte[] fileDataToPrint = File.ReadAllBytes("...");
string filePassword = "";
printManager.PrintPDFFromMemory(fileToPrint, filePassword);

Creating a print job

For any advanced printing, it's best to �rst create a print job. Once a print job has been created,
multiple documents can be added to it and there are many di�erent settings that can be controlled.
It's also possible to monitor the print job while printing is in progress.

The �rst step is to call the NewPrintJob function. This will return a value that can be used as the jobID
parameter for all the subsequent calls to print job related functions.

One or more �les can be added to the print job either from disk (using AddPDFFromFileToJob) or from
memory (using AddPDFFromMemoryToJob).

When the job is ready to start, call the BeginPrintJob function and printing will begin.

Initializing the print manager

Use the InitPrintManager function to initialize the print manager to unlock all the functionality. A valid
serial number and license key for Foxit PDF SDK should be provided.When there is no need to use
print manager any more, please call the ReleasePrintManager function of PrintManage to release it.

This example shows how to create a job, add three �les, set the duplex and begin printing:

int jobID = printManager.NewPrintJob();
printManager.AddPDFFromFileToJob(jobID, "C:\\docs\\file1.pdf");
printManager.AddPDFFromFileToJob(jobID, "C:\\docs\\file2.pdf");
printManager.AddPDFFromFileToJob(jobID, "C:\\docs\\file3.pdf");
int duplexMode = 2; // Vertical duplex
printManager.SetDuplex(jobID, duplexMode);
printManager.BeginPrintJob(jobID);

Getting a list of printers

The printer names for the current system can be enumerated using the GetPrinterCount and
GetPrinterName functions.

int printerCount = printManager.GetPrinterCount();
List<string> printers = new List<string>();
for (int printerIndex = 0; printerIndex < printerCount; printerIndex++)
{

 printers.Add(printManager.GetPrinterName(printerIndex));
}

Getting a list of paper sources

The paper sources (trays) for a speci�c printer can be enumerated using the GetPaperSourceCount
and GetPaperSourceName functions.

This example retrieves the paper source list for the default printer:

Getting a list of paper sizes

The paper sizes for a speci�c printer can be enumerated using the GetPaperSizeCount,
GetPaperSizeWidth and GetPaperSizeHeight functions.

int paperSourceCount = printManager.GetPaperSourceCount(printerName);
List<string> paperSources = new List<string>();
string printerName = printManager.GetDefaultPrinterName();
for (int paperSourceIndex = 0; paperSourceIndex < paperSourceCount; paperSourceIndex++)
{

 paperSources.Add(printManager.GetPaperSourceName(printerName), paperSourceIndex));
}

This example retrieves the page size list for the default printer:

int paperSizeCount = printManager.GetPaperSizeCount(printerName);
List<string> paperSizes = new List<string>();
string printerName = printManager.GetDefaultPrinterName();
for (int paperSizeIndex = 0; paperSizeIndex < paperSizeCount; paperSizeIndex++)
{
 double paperWidth = printManager.GetPaperSizeWidth(printerName), paperSizeIndex);
 double paperHeight = printManager.GetPaperHeight(printerName), paperSizeIndex);
 paperSizes.Add(paperWidth + " x " + paperHeight);
}

Directly using the C interface

If you are using a programming language such as C++ or Delphi, you can connect to the DLL's C
interface. This is a little bit more involved compared to the C# interface class where all the complexity
is handled for you.

If you are using dynamic linking, use the LoadLibraryEx WinAPI function with the
LOAD_LIBRARY_SEARCH_DEFAULT_DIRS and LOAD_LIBRARY_SEARCH_DLL_LOAD_DIR �ags. Make sure
that an absolute path is used, not a relative path, using a function such as PathCanonicalize if
necessary.

If you are using C++ with Visual Studio, you can use the fsdk_printmanager_win32.lib or
fsdk_printmanager_win64.lib to link the appropriate DLL to your project.

All functions are exported from the DLL with the FXPM_ pre�x.

Strings are in UTF-8 format. A copy of all data retrieved from the library should be made before the
next function call.

All strings and data sent to the library will be copied to internal storage.

The �rst step would be to create an instance of the print manager, using the NewPrintManager
function:

int managerID = FXPM_NewPrintManager();

int managerID = FXPM_NewPrintManager();
std::string sn = "... Foxit PDF SDK serial number here ...";
std::string key = "... Foxit PDF SDK license key here ...";
int initResult = FXPM_InitPrintManager(managerID, sn.c_str(), key.c_str());

This managerID value must then be used as the �rst parameter for all the following function calls. For
example, to initialize the library:

When there is no need to use print manager any more, please call the FXPM_ReleasePrintManager
function to release it.

